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1. Introduction

The shell of revolution periodically loaded by mechanical forces or by the periodicaliy
forced displacement is analysed in the paper. The material of a shell is assumed to be
linear. The problem will be solved on the basis of the technical theory of thin shells [1].
Under assumption that the displacements and deformations are small the problem is
linear. It is also assumed that the loadings of the shell (mechanical and nonmechanical)
are described by the harmonic functions with the circular frequency w and are applied
in the duration of the sufficient length. It allows to assume that the motion of the construc-
tion is stationary, i.e. that the displacements and internal forces vary periodically with
the frequency w. It enables searching of the solution without explicit time function.

plxti=pxlei
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L= fofx)e™t
Fig. 1

The set of curvilinear coordinates x = (&, %) (Fig. 1) is chosen in the middle surface
of the shell. For sifnplif ication it is assumed that all loads are in the same phase and that
the origin of the time axis is chosen so, that the phase angle is equal to zero. It does not
restrict the generality of considerations because the problem is linear and the principle
of superposition holds. For w = 0 the statical problem has been received.
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The solution of the problem has been obtained numerically by Finite Element Method

[2, 3]. The construction of the FEM algorithm for eight parameter conical elements are

given in the paper. The solution formulated in this way has been applied to the analysis
“of the rubber construction of the seal of rotational shafts.

7 2. Basic definitions and linear viscoelasticity equations

Let the syster;l of cylindrical coordinates X = (r, z, ) be introduced in the Euclidean
space. The middle surface of the shell immersed in this space occupies the region . The
‘curvilinear coordinates x = (&, n), interrelated with (r, z, %) by means of X' = [r(&), z(£), 7],
parametrize the surface. The material of the shell is isotropic with mass density g, and
thickness distribution A(£).

All functions which describe the motion, deformations and stresses in the shell will
be described in terms of the physical coordinates of the two dimensional tensor fields on
the middle surface of the shell. Keeping in mind the applied method of the solution we
have assumed it in the form of vectors in the local set of coordinates (x, ).

The motion of the middle surface is described by the displacement vector

(N fGx, 1) = [u(x, 1), v(x, 1), w(x, D]".
Moreover, the concept of the generalized vector of displacement is introduced
(2) Jex, 1) = [, 1), o(x, 1), w(x, 1), @5, 1), polx, OF,

where @i(x, t), @,(x, t) are angles of rotations of the material fibre normal to the mid-
surface.
The stresses and deformations in the shell are described by vectors

3 & 1) = Jalx, 1), 6%, D, (i, ), 2, 1) 0 Cx, 1), 2(x,-2)",

©) o(x, t) = [ng(x, 1), n,(x, t), ng,(x, 1), me(x, t), m,(x, 1), meg,(x, H).°
Geometrical relations have the form, [2]

&) e(x, 1) = B[f(x, 0],

where 4[...] is the linear differential operator of geometrical relations for thin shells of
revolution. Stress-strain relations will be written down in the form of the Voltera equation,
3] ]

(6) o(x,t) = F*[e(x, 1)].

For » = const Eq. (6) can be rewritten in the form
. !
(7 o(x, 1) = D) [elx, )= [ (1= 1) e(x, ).
0
where I'(t, v) = I'(t—7) is the relaxation speed function, while D(§) is the elasticity

matrix for the isotropic linear elastic body.
The equation of motion of the shell will be derived from the law of conservation of
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the energy. For isothermic problems we have

®) - K+U=L,
where: K is the power of the kinetic energy
) K= [ [fte, 01 o(®)f(x, 1)dd,
il
(10) o(&) = diag[go, 00, 00, h*00/12, h*00/12],

U is the power of the internal energy

(11) U= [ [&x, Da(x, Ndo,
]
and L is the power of the external forces

(12) L= [ [fte, O p(x, nydd.

]

3. The algorithm of FEM

Let the shell be divided into a number of the conical finite elements and the lines of
nodes coincide with the chosen parallels [2]. The nodal parameters in the node a(x = 1, 2)

are represented by the vector (Fig. 2)

(13) o, 1) = [ul(n, 1), v&2(n. 1), we(n, 1), ¢i(n, D).

Fig. 2

Taking into account the axial symmetry of the structure, we are to expand the nodal °
parameters into the Fourier series along the 7 variable. If the motion is an effect of the

periodical excitation with the frequency w, then

(14) (. 1) = 2
=0

(e8]
Yy okeiot = Dy (e +isk)eie,
: i
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where y'(n) = diag [a, 51, ¢, ¢,

cosly {sinh/ for even loads
' T \sinly’ coslyy for odd loads’
8, :52‘— real part and imaginary part (respectively) of the displacement vector of the
a node. ‘
Displacements of e-element will be written down in the form
{15) FOMD, 1) = Ny 3001, 1) = D) NEE)y () 8ielr =
) {

PEIOIACOPEES
1l
where: x¢ = (£©, ) e 99,
z'(n) = diag [e1, 51, c.

Table 1
1—& 0 0 0
|~ R
Ny = 0 | 1-¢ 0 ’ 0
e e ; s
0 i 0 1382 +28° ‘ L(§—2£24-£%)
£ ' 0 0 0
i Ty = Zatl
NZ,(5) = 0 | 3 0 0
0 i 0 382280 ‘ L(—&+£7)

In Eq. (15) typical base functions were used, namely linear for displacements « and
v while cubic for the displacement w. The shape matrix N, is presented in Table 1. Here
and in what follows the summation convention holds. Similarly for the generalized vector
of displacements (2) we have

(16) FORO, 1) = Ngy 820, 1) = 3 Ny (80! () 94 =
1

b L, ]
= ; :’(7])]\7(‘:‘)(5(6)) Shergiot

Geometrical relations in accordance with (5) have the form
(17) EOX©®, 1) = BfORD, D] = # [Z‘ :l(,,))‘,\r(o:,)(s(c)) Olergiet
]

= D) 2 Bla(E@) oo,
I

where: z () = diag [¢;, ¢;. 8, 1. €1, 81,


file:///sinlrj

*$peoj ppo io} T“ =A faztead=7 tz-tr= p fui-tis= o Q=
SPEO] UdA3 10] | - i
i s A B ﬁ_|-. L 5 4 7I4 T4
AN..M..TwF vﬁm L.Amu..TNw VNS._N ,_ A wo WOV 3.N +ﬁnuN m.Mv _*. kN z +W AT 0
4 T4 T Tixd
(e ef =) - +(FE+5T—)— = (5730 4 (c9-39) S — R 0
Tzl . 1 8 o A o &
5 Hnl lnN| s |vMN1.|
F9+2-) - N (2r-9)- 0 S
{ s 7T A7 Auv
Ble g S g, W s I-.A, g ! A
) 4 ! 4 T4
(e3+25-) 2 | (52— 2376) i 7 T 37 %
_, 7
e ———— e S S-S —— A - S—— ﬁ
Y] (R a7 Tt
36+ - +(e5+ - $ (5T 36— L B | P
(7€ +3%— N,\‘.N (c7+:90—3)- Ns xN (z39+59— v\SN (3T + 3¢ —v NS LN v GE-1- - 0
i e T4 i
(e3+252-3)— +( wm+wvl_v AmWN+nwml_v‘+Anwo+uw -) (€] 0
- B 2. | oy o, My A zl A 2
1
(39+v-) _I.I (3TI+9— vl!l 0 0
7 T4 N 4 = (P
‘ 0 SEES P s
B . " o B TR 2 I A v 1%
oA Ad
(3+ese=3)— (e3T+ 3¢ G-D ¢-n
[ )
0 ] 0 | I
i I I

< dqel

1173


http://JJ.fl

174 P, KONDERLA

B, (6?) — geometrical matrix is presented in Table 2.
After the conversion of Eq. (7) and substitution into Eq. (17) we have

(18) @ (x, 1)

I

D(E(e))[a(e)(x(e’, t)—ff(t—r) 224, r)dr] o
0

= D(&©) e (x®, 1) (I +ily) =
= (L +il)D(E) N, v z! () B2, (&) 8ireir

where I, = 1- [ I'(z)coswzdz, I = f I'(z)sinwzdz.
0 0

The shell as an assemblage of elements e = 1,2, ..., E occupies the region ¢ which
is different from the region 9. The total nodal parameters of the structure &} are related
to the local parameters of the element by the transformation

(19) YO = QIO 8l = §l4id),
where

() B
(20) QI — {l for e4a—1=j,

0 in the all remaining cases,

cosd® 0 sing®@ 0
0 1 0 0
—sing® 0 cos¢p® 0
GEL IR T

(21) At =

Applying the transformation (19) to Eqgs. (15), (16), (17) and (18) we arrive at the
expressions describing the state of displacement, deformations and stresses at each point
of the region v in the form

E
Jx,t) = 2‘ \? 2 () NE QIO el = “-\,::l(,,])gvj(g)lj}eiwr’
ST, ]

4

~ 2! = .
‘(.f, I) - E —\_l _l(q)Nc& ,Qé“)é’ ai®l 2’ Zl(,,))j\rj(g) ,)j_clwl .

¢ i ]

(22) gx,t) = }: Z 24 () BIZ, (@) R4 dleiet = ZEI(,DBI,"('E) Sleit
4 1 7
(%, 1= (Lo 1L ) \ D(E“”) 21 () BIA(E9) QL@ dle™t =
(F +l[) S D( )31(77)3”(550}6"‘"',

where x = (E ) and & —is the coordinate which coincides with the generator of the
clement.

Substituting RHS of Egs. (22) into Eq. (8) and the performing simple conversions,
we obtain the equation of equilibrium of the structure in the form
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(23) (L 4il) K8l —w*MYn6) = FY,
for -1 ="0001,72, = SIS 8D S el
where
k" = [ [2'(n) BYETIDE)Z () B"(E)dd,
o
(24) MY = [ [Z) M@ e®' () N"E)dd,
9

Fli = _f [Z ()N (O] po(E, m)dd.

Comparing real and imaginary parté of Eq. (23) we obtain the conjugateYsystem of
equations with real roots
(Ichljn —,(UZM”")—S; _I’sKljné_:'

5]

I
]

(25)

I

_]"sKljng;I'_ (i”cKljn _w2Mljn) S—Zl — lj,
for 1 =0,1,2,...;j=1,2,...,E+1.

Together with Eqgs. (25) the suitable displacement boundary conditions have to be
taken into account.

4, The numerical example

Forced vibrations of the shell of revolution being the model of the rubber construction
of the seal of rotational shafts (Fig. 3) is analysed. The linear viscoelastic body, for which
the velocity of relaxation function takes the form

(26) L) ==Ce A+ ~for 1.3 D4
is assumed as the model of the material.

S 0.65cm e 1L

__ the axis of rolation _}_\1}_@

,Ll e

the axis of a shaft
Fig. 3
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The material constants were found on the basis of the laboratory tests: C = 0,236;
f =00l; « = 0,1; Youngs modulus of elasticity E = 9,4 MPa. The mass density of ma-
terial is equal to p, = 1250 kg/m?.

The forced displacements of the structure are given by its loading as a result of the
eccentric location of the axis of rotational shaft in the relation to the axis of rotation.
The motion -of the shaft can be decomposed into two simple harmonic motions in two
perpendicular directions, displaced in relation to each other by phase angle equal 7/2.
Dynamical thrusts of the seal lip on the shift are the most interesting values from the
point of view of applications. On Fig. 4 the plot of amplitudes of the unitary thrusts of
the seal lip as the function of angular velocity @ is given. The motion of the structure in
which different influences are taken into account has been analysed:

a) the motion of the structure in which the mass of the spring and the friction are neglec-

ted, (line 1 on Fig. 4),

b) the motion of the structure with the influence of the mass of the spring and without

the friction (line 2 on Fig. 4),

c) the motion of the structure with the influence of the mass of the spring and the friction

(line 3 on Fig. 4).

» p.IN/m]
aolf \:\
5 ]
.0 wlrd/s!
1000 Eooo-.\
_5 — - i —— | — s E e ]
il = I —|

-15
Fig. 4

In each case the forced displacements of the nodal line in the place of contact of the
seal with the shaft are equal to wy(z, 1) = wjcoszne' for w! = 0,01 cm, in the direction
perpendicular to the axis of the shaft. It is assumed that the constraints in the place of
the contact are bilateral. The coefficient of friction u was taken equal to 0,1. Line 4 on
Fig. 4 shows unitary thrust as the result of the static axisymmetrical extension of the seal
lip by value w) = 0,01 cm.
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Peawme

AHAJIM3 BA3KO-YIIPYTONY OBOJIOUKU BPAIIEHUS INEPHOIUYECKH HATPY)KEHHO'

B paGore apanuanpyiorcst 0G0JIOYKH BPAICHHSA IHKIHYCCKH HATPY’KEHHbIE MEXaHHUECKOH HArpy:-
KOH WM LMKIMYECKH BBIHY)KZEHHbIM NepeMmelneHueM. Mogesh MaTepuana 5TO TeJIO NMHEHHO BSI3NG-
yapyroe. IlpoGreMbl pelIAIOTCS HCXOIS M3 YPaBHEHHIl TEXHHYECKOl TEOPMH TOHKHMX 0BO0NoueK mo.r.-
3YACh METOAOM KOHEYHBIX 3NIeMeHTOB. [l MNIIOCTPauuH 2HANN3HUPYIOTCA BLIHYMKAEHHBIC KONCDaRrIix

00ONIOYKH BpALCHHUA COCTARNSIONIEH MONETh KOHCTPYKLHH DEe3MHOBOTO YIJIOTHEHMS BPALAIONDINCE
BaJIOB. 3

Streszczenie

ANALIZA LEPKOSPREZYSTEJ POWLOKI OBROTOWEJ OBCIAZONEJ PERIODYCZNIE

W pracy analizowano powloke obrotowa obcigzona cyklicznie obcigzeniem mechanicznym lub cykiicz
nie wymuszonym przemieszczeniem. Modelem materiatu jest ciato liniowo lepkosprezyste. Zagadnienic
rozwiazano w oparciu o zwigzki technicznej teorii powtok cienkich, postugujac si¢ metoda elemzntow

skonczonych. Jako ilustracje analizowano drgania wymuszone powloki obrotowej bedacej modelem
Konstrukcji gumowego uszczelnienia wirujagcych walow.

Praca zostala zleiona w Redakcji dnia 15 stycznia 1983 roku



