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Multilayer structures allow obtaining good performance in acoustic insulation to eliminate
unwanted noise in the medium and high frequencies in many applications such as building
and transport industry. In this paper, the sound transmission of multilayer systems is stu-
died using the Transfer Matrix Method (TMM). The studied multi-layered panels include
elastic, viscoelastic and porous materials. Several configurations of multilayer systems are
studied, and their corresponding transmission loss TL is computed. Also, the effects of po-
rous material characteristics are studied to evaluate the impact of each parameter.
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1. Introduction

The control of noise and vibration has become one of the major concerns in several fields of
industry (aeronautics, automobile, household appliances...). Indeed, reduction of noise and vi-
brations avoids material damage and nuisance effects. The use of sandwich systems with a high
damping power core is one of ways to reduce elevated noise and vibration levels. This type of
structures offers significant technological advantages (low weight, high rigidity, easy automation
of manufacturing, etc.). These sandwich panels contain an absorbent porous materials and are
widely used in transport and building industries to reduce nuisance noise and improve comfort
of individuals.
In order to increase acoustic insulation properties of multilayer panel configurations, elastic,

viscoelastic and porous materials were studied by Allard et al. (1987), Mueller and Tschudl
(1989), Atalla et al. (1998), Ghinet et al. (2005) and Abid et al. (2012). The behavior of panel
combinations of materials depends more or less on dimensions and boundary conditions of edges.
Nevertheless, interesting results can be obtained by modeling the samples in the form of infinite
plates subjected to incident plane waves.
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The modeling of the acoustic response of multilayer structures is done using different me-
thods. Tanneau (2004) and Tanneau et al. (2006) studied modeling of an aeronautical insulation
panel by the finite elements and boundary elements. These methods are applicable in low frequ-
encies. When the frequency domain increases, the implementation of these methods is confronted
with an excessive increase of the degrees of freedom associated with fineness of the mesh compa-
tible with wavelengths. The cost of calculations becomes then prohibitive and the results are very
sensitive to the least perturbation of geometric and physical parameters. In order to overcome
these disadvantages, Thomson (1950), Allard et al. (1989), Lee and Xu (2009), Munjal (1993)
and Sastry and Munjal (1995) presented an analytical method for the estimation of acoustic
indicators of stratified media called the Transfer Matrix Method (TMM). This method is based
on the representation of propagation of plane waves in different media in terms of the transfer
matrix.

The TMM is applied with an excitation of the air (normal or oblique acoustic wave) and
in a diffuse field. The TMM is based on calculation of the transfer matrix of each layer. These
matrices are obtained by applying continuity conditions on the interfaces between layers giving
a system of equations linking speeds and stresses between the layers. The global transfer matrix
is calculated: If the layers are of the same nature, the transfer matrix is made by multiplying
the transfer matrix of each layer. If the layers are different, the interface matrix is used. Finally,
the transmission loss TL is calculated from the resulting global transfer matrix as presented by
Munjal et al. (1993).

The aim of the present paper is to predict the acoustic parameters of several multilayer
configurations by the Transfer Matrix Method and to study also the effect of replacement of
the viscoelastic layer instead of the elastic solid layer. Also, the effects of porous parameters on
the behavior of sound transmission of these configurations are studied in order to improve the
acoustic insulation of multilayer panels.

The outline of the document is as follows: Section 1 presents description of the TMM for pre-
dicting the transfer matrix of a multilayer structure. In Section 2, calculation of the transmission
loss from the obtained transfer matrix is presented. Finally, numerical results and a compari-
son study based on the replacement of the elastic layer by a viscoelastic layer are presented
in Section 3. In this Section, a parametric study is carried out to choose the best multilayer
configuration.

2. The transfer matrix method

2.1. General formulation

The transfer matrix method is based on the modeling of propagation of plane waves in various
layers by the transfer matrix. As presented in Fig. 1, the studied layer is an h thickness layer
excited by an oblique wave plane. The geometry of the problem is bidimensional in the incident
plane (x1, x3). The lateral dimension of the layer is supposed to be infinite. Various types of
waves can propagate in the material according to their nature as studied by Allard and Atalla
(2009). The sound propagation in the layer is represented by a transfer matrix T as follows

VM1 = TVM2 (2.1)

whereM1 andM2 are sets close to the forward and backward face of the layer, respectively, and
where the components of the vector VM1 and VM2 are respectively the variables which describe
the acoustic field at the points M1 and M2 of the medium. The transfer matrix T depends on
the thickness h and the acoustical properties of each medium.
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Fig. 1. Layer subjected to an oblique incident wave

2.2. Construction of the transfer matrix

Figure 2 represents a multi-layer structure composed of solid and poroelastic layers. In the
following, the computation of the transfer matrix of each medium is presented.

Fig. 2. Multilayered panel

2.2.1. Solid layer

In an elastic solid layer, longitudinal and shear waves propagate into the layer. The acoustic
field in the material is described using the amplitudes of the following waves: the incident and
reflected longitudinal waves and the incident and reflected shear waves (A1, A2, A3 and A4).
The associated displacement potentials can be written as follows

φ = exp(jwt− jk1x1)[A1 exp(−jk13x3) +A2 exp(jk13x3)]

ψ = exp(jwt− jk1x1)[A3 exp(−jk33x3) +A4 exp(jk33x3)]
(2.2)

where the x3 components k13 and k33 of the wave number vectors are expressed as follows

k13 =
√
δ21 − k

2
t k33 =

√
δ23 − k

2
t (2.3)

The x1 component of the wave number k1 is given by

k1 = k sin θ (2.4)

δ21 and δ
2
3 are respectively the squares of the wave numbers of the longitudinal and shear waves

in the elastic solid layer. They are given by

δ21 =
ω2ρs
λ+ 2µ

δ23 =
ω2ρs
µ

(2.5)

where ρs is the surface density of the elastic solid, λ and µ are, respectively, the first and second
Lamé coefficients. The acoustic field in the elastic solid layer can be predicted if the amplitudes
A1, A2, A3 and A4 are known. Instead of these parameters, four mechanical variables may be
known to express sound propagation everywhere in the medium. Following Folds and Loggins
(1977) the four chosen quantities are vs1 and v

s
3 being respectively the x1 and x3 components
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of the velocity at point Mi as well as σ
s
33 and σ

s
13 being respectively the normal and tangential

stresses at the point Mi. The vector V
s in this case is expressed as follows

VsMi = [ν
s
1(Mi), ν

s
3(Mi), σ

s
33(Mi), σ

s
13(Mi)]

T i = 1, 2 (2.6)

These velocities and stresses are written as follows

νs1 = jω
( ∂φ
∂x1
−
∂ψ

∂x3

)
νs3 = jω

( ∂φ
∂x3
+
∂ψ

∂x1

)

σs33 = λ
(∂2φ
∂x21
+
∂2φ

∂x23

)
+ 2µ

(∂2φ
∂x23
+

∂2ψ

∂x1∂x3

)
σs13 = µ

(
2

∂2φ

∂x1∂x3
+
∂2ψ

∂x21
−
∂2ψ

∂x23

) (2.7)

To obtain the transfer matrix Ts of the elastic solid layer, the vector VsM1 is first connected to
the amplitudes of different waves propagating in the layer presented by the following vector

A = [(A1 +A2), (A1 −A2), (A3 +A4), (A3 −A4)] (2.8)

and by the matrix Γ(x3) such that

VsM = Γ(x3)A (2.9)

If the origin of the x3 axis is fixed at the point Mi, the vectors V
s
M1
and VsM2 are expressed as

VsM1 = Γ(0)A VsM2 = Γ(h)A (2.10)

Then, the transfer matrix Ts which relates VsM1 and V
s
M2
is equal to

Ts = Γ(0)Γ−1(h) (2.11)

2.2.2. Poroelastic layer

In a porous material structure, three elastic waves propagate into the medium: two compres-
sion waves and a shear wave (Allard et al., 1987). The displacement potential of the compres-
sion φs and shear ψs waves are given by

φs1 = exp(jωt− jk1x1)[A1 exp(−jk13x3) +A
′

1 exp(jk13x3)]

φs2 = exp(jωt− jk1x1)[A2 exp(−jk23x3) +A
′

2 exp jk23x3)]

ψs2 = exp(jωt− jk1x1)[A3 exp(−jk33x3) +A
′

3 exp(jk33x3)]

(2.12)

The air displacement potentials are related to the layer displacement potentials by

φfi = µiφ
s
i i = 1, 2 ψf1 = µ3φ

s
2 (2.13)

with

φfi
φsi
=
Pδ21 − ω

2ρ̃11
ω2ρ12 −Qδ2i

i = 1, 2 µ3 = −
ρ̃12
ρ22

The ratio µi of the velocity of the air over the velocity of the frame is for two compression waves
and µ3 is for the shear wave. The acoustic field in the porous layer can be predicted everywhere
if the six amplitudes A1, A

′

1,A2, A
′

2, A3, A
′

3 are known. However, instead of these parameters, six
independent acoustic quantities can be chosen. Three velocity components and three elements
of the stress tensors: two velocity components νs1 and ν

s
3 of the frame, the velocity component ν3

of the fluid, two components σs33 and σ
s
13 of the stress tensor of the frame and σ

f
33 in the fluid. If

these six quantities are known at the point Mi in the layer, the acoustic field can be predicted
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everywhere in the layer. Moreover, the values of these quantities anywhere in the layer depend
linearly on the values of these quantities at Mi. So, the vector V

p
Mi
can be defined as follows

V
p
Mi
= [νs1(Mi), ν

s
3(Mi), ν

f
3 (Mi), σ

s
33(Mi), σ

s
13(Mi), σ

f
33(Mi)]

T (2.14)

V
p
Mi
being a column vector. These six quantities are written as

νs1 = jω
(∂φs1
∂x1
+
∂φs2
∂x1
−
∂ψs2
∂x3

)
νk3 = jω

(∂φk1
∂x3
+
∂φk2
∂x3
−
∂ψk2
∂x1

)
k = s, f

σs33 = (P − 2N)
(∂2(φs1 + φs2)

∂x21
+
∂2(φs1 + φ

s
2)

∂x23

)
+Q
(∂2(φf1 + φ

f
2)

∂x21
+
∂2(φf1 + φ

f
2 )

∂x23

)

+ 2N
(∂2(φs1 + φs2)

∂x23
+

∂2ψ22
∂x1∂x3

)

σs13 = N
(
2
∂2(φ21 + φ

2
2)

∂x1∂x3
+
∂2ψs2
∂x21
−
∂2ψs2
∂x23

)

σf33 = R
(∂2(φf1 + φ

f
2 )

∂x21
+
∂2(φf1 + φ

f
2 )

∂x23

)
+Q
(∂2(φs1 + φs2)

∂x21
+
∂2(φs1 + φ

s
2)

∂x23

)

(2.15)

where N is the shear modulus of the material, and P , Q and R are the elastic coefficients of
Biot (Biot, 1956).
The vector VpMi satisfies the relation

V
p
Mi
= Γ(x3)A (2.16)

with A being the column vector defined as

A = [(A1 +A
′

1), (A1 −A
′

1), (A2 +A
′

2), (A2 −A
′

2), (A3 +A
′

3), (A3 −A
′

3)]
T (2.17)

and Γ(x3) is a connectivity matrix which results from system (2.12). As in the case of a solid
layer, the transfer matrix between two points is obtained by the same procedure

Tp = Γ(0)Γ(h−1) (2.18)

2.2.3. Viscoelastic layer

Mechanical characteristics of viscoelastic materials depend on the excitation frequency. To
describe such a material, the complex representation of the Young modulus following (Abid et
al., 2012; Szabo, 2000; Soula and Chevalier, 1998) is used

E∗ = E0
1 + jωτu
1 + jωτ

(2.19)

and

E′ = E0
1 + ττuω

2

1 + w2τ2
E′′ = E0

ω(τu − τ)

1 + w2τ2
(2.20)

where E′ and E′′ are respectively the real and imaginary parts of the complex modulus E0, τ and
τu are relaxation times of the viscoelastic material determined experimentally with relaxation
and creep tests.

2.3. Continuity relations at the interfaces

The objective of this Section is to examine continuity relations for all possible interfaces.
These relations depend on the nature of materials of the adjacent layers (Allard et al., 1989).
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2.3.1. Fluid-solid interface

The continuity conditions are given by

−p(A) = σs33(M1) 0 = σs13(M1) νf3 (A) = ν
s
3(M1) (2.21)

The following equations can be condensed as follows

If,sV(A) + Jf,sV(M1) = 0 (2.22)

with

If,s =



0 −1
1 0
0 0


 Jf,s =



0 1 0 0
0 0 1 0
0 0 0 1


 (2.23)

Jf,s and If,s must be interchanged for the fluid-solid interface.

2.3.2. Porous-fluid interface

The continuity conditions are given by

(1 − φ)νs3(M4) + φν
f
3 (M4) = ν

f
3 (B)

σf33(M4) = −φp(B) σs33(M4) = −(1− φ)p(B) σs13(M4) = 0
(2.24)

where φ is the porosity of the porous layer. These equations can be rewritten in the form

Ip,fV
p
M4
+ Jp,fV

f
B = 0 (2.25)

with

Ip,f =




0 1− φ φ 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1


 Jp,f =




0 −1
−φ 0
0 0
φ 0


 (2.26)

The matrices Ip,f and Jp,f must be interchanged for the fluid-porous interface.

2.3.3. Solid-porous interface

The continuity conditions are given by

νs3(M2) = ν
s
3(M3) = ν

f
3 (M3) νs1(M2) = ν

s
1(M3)

σs13(M2) = σ
s
13(M3) σs33(M2) = σ

f
33(M3) + σ

s
33(M3)

(2.27)

This can be rewritten as follows

Is,pV
s
M2
+ Js,pV

p
M3
= 0 (2.28)

where

Is,p =




1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1




Js,p =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0




(2.29)

The matrices Is,p and Js,p must be interchanged for the porous-solid interface.
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Fig. 3. A multilayer domain

2.4. Computation of the transmission loss TL of the multilayer

Generally way, the expressions of continuity between all layers of the system as presented in
Fig. 3, are written by the following intermediate equations

If,1V
f
A + Jf,1V

1
M2
= 0

Ik,k+1V
k
M2k
+ Jk,k+1T

kVkM2(k+1) = 0 k = 1, . . . , n− 1
(2.30)

This set of equations can be rewritten as

DV0 = 0 (2.31)

where

D =




If,1 Jf,1T
1 0 0 0

0 I1,2 J1,2T
2 0 0

· · · · · · · · · · · · · · ·
0 0 I(n−2)(n−1) J(n−2)T

n−1 0

0 0 0 I(n−1)(n) J(n−1)(n)




V0 = [V
f
A , V

1
M2
, V 2M1 , . . . , V

(n−1)(M2n−1), V
(n)(M2n), V

f
B ]
T

(2.32)

Then, D′ and D′′ matrices are defined as follows

D′ =



−1 · · · D · · · 0
· · · · · · · · · · · · · · ·
0 · · · 0 −1 ZB


 D′′ =



−1 ZA 0 · · · 0
· · · · · · D · · · · · ·
0 · · · 0 −1 ZB


 (2.33)

such as

D′V0 = 0 (2.34)

where ZA and ZB are, respectively, the impedance of the medium A and B.

The determinant of the matrix D′′ must be equal to zero. ZA is given by

ZA = −
|D′|

|D′2|
(2.35)

where |D′1| is the determinant of the matrix D
′ without its first column, |D′2| is the determinant

of the matrix D′ without its second column.

The reflection coefficient R is related to ZA by

R =
ZA −

ZC
cos θ

ZA +
ZC
cos θ

(2.36)
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where ZC is the characteristic impedance in the air medium

ZC = ρairCair (2.37)

The transmission coefficient T is determined as follows

T = (1 +R)
|D′N−1|

|D′1|
(2.38)

where |D′N−1| is the determinant of D
′ without the (N − 1) column.

The TL transmission loss is defined by

TL = 10 log
1

τ
(2.39)

where τ is the acoustic transparency defined as follows

τ =
PT
PI

(2.40)

The symbols PT , PI represent, respectively, the transmitted and the incident power waves, and
finally

TL = 10 log
PI
PT
= 10 log

p2
i

2Zfluid1

p2
t

2Zfluid2

(2.41)

where pi, pt represent, respectively, the amplitude of the incident and the transmitted waves.

3. Numerical results

3.1. Validation of the TMM

The TMM is tested by comparing its results with experimental findings obtained by Tanneau
(2004). Two configurations are studied:
• The first is a 2.1mm thickness plate glued to to 30mm thick porous material.

• The second is composed by the 30mm thick porous material glued to two 2.1mm thick
plates on each side. The mechanical proprieties of the used materials are presented in
Table 1.

Table 1. Parameters of tested materials

Parameters Porous Plate

Porosity ϕp 0.98 –

Tortuosity α∞ 1.03 –

Resistivity σp [Ns/m
4] 6600 –

Viscous length Λ [µm] 200 –

Thermal length Λ′ [µm] 380 –

Density ρ [kg/m3] 11.2 1100

Poisson’s coefficient ν 0.3 0.3

Young’s modulus E [Pa] 292.8e3 2.62e9

Damping loss factor η 0.0624 0.06

Figures 4a and 4b represent, respectively, a comparison between the computed and the
experimental TL obtained in the two studied configurations and for the incident angle θ = π/4.
A good agreement is observed between the results obtained by the TMM and the experimental
results (Tanneau, 2004; Tanneau et al., 2006). In these figures, we can distinguish 3 zones:
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Fig. 4. Theoretical and experimental transmission loss TL of the studied (a) plate-porous configuration
and (b) plate-porous-plate configuration

• zone 1: f < fcoin – the mass controls the transmission. The wavelength in this frequency
range is very large compared to the thickness of the wall. For this, the behavior of the multi-
-layer wall will be identical to that of a simple wall; therefore, the slope of the transmission
will be of 6 dB/octave

• zone 2: f = fcoin – the damping plays a significant role

• zone 3: f > fcoin – the stiffness controls the transmission.

where fcoin is the coincidence frequency. It is the frequency at which the airborne acoustic
wavelength matches the plate bending wavelength. It is expressed as follows

fcoin =
c2

2π sin2 θ

√
12ρ(1 − ν2)

Eh2
(3.1)

Also, comparison between the coincidence frequencies as presented in Tables 2 and 3 showed a
good agreement.

Table 2. Comparison between the theoretical and experimental coincidence frequencies in the
case of plate-porous configuration

TMM
Theoretical Experimental
(London, 1950) (Tanneau, 2004)

1643Hz 1554.7 Hz 1450Hz

Table 3. Comparison between the theoretical and experimental coincidence frequencies in the
case of plate-porous-plate configuration

TMM
Theoretical Experimental
(London, 1950) (Tanneau, 2004)

2987Hz 3317.8Hz 3000Hz

Results presented in Figs. 4a and 4b and Tables 2 and 3 allow validation of the proposed
method (TMM).



970 H. Felhi et al.

3.2. Response of multilayer systems

In this part, the TMM is used to compute the TL of several multilayer configurations to find
the best arrangement of layers in terms of sound transmission. Two configurations are studied
which are:

• First configuration: 1mm of the elastic layer – 30mm of the porous layer.

• Second configuration: 0.5mm of the elastic layer – 30mm of the porous layer – 0.5mm of
the elastic layer.

The two studied configurations are subjected to an incident wave at θ = π/4. The characteristics
of the porous and the elastic layers are respectively presented in Table 4.

Table 4. Parameters of the used materials

Parameters Foam Steel

Porosity ϕp 0.98 –

Tortuosity α∞ 1.03 –

Resistivity σp [Ns/m
4] 6600 –

Viscous length Λ [µm] 200 –

Thermal length Λ′ [µm] 380 –

Density ρ [kg/m3] 11.2 7850

Poisson’s coefficient ν 0.3 0.3

Young’s modulus E [Pa] 292.8e3 210e9

Damping loss factor η 0.0624 0.06

The predicted transmission loss TL is presented in Fig. 5. For the first configuration, it is
seen that the evaluation of the TL with frequency is progressive but it presents a weak peak at
the frequency 1500Hz.

Fig. 5. Comparison of TL versus frequency curves amongst double and triple panel

For the second configuration, the TL is less important for the low frequency up to 450Hz,
then it successively increases with frequency. At high frequencies, the TMM is able to predict
the TL with good accuracy. The thickness resonance at 2900Hz is well predicted. This curve
has a high-frequency discontinuous track corresponding to the coincidence zone.
As seen in Fig. 5, the TL value for the first configuration does not exceed 52 dB, on the other

hand, for the second configuration, which includes three layers, the TL value reaches 85 dB at
high frequencies, which may be explained by the effect of the elastic layer. It is found that
the second configuration with triple layers has good insulation behavior, especially in the high
frequency range 700Hz-10000 Hz.
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In comparison between the two studied configurations, it seems that the second configuration
isolates better than the first configuration.

3.2.1. Effect of replacing the steel layer by a viscoelastic layer

In this Section, the steel layers in the two studied configurations are replaced by viscoelastic
layers and conserving the same weight of each configuration to show the effect of this replacement.
The mechanical proprieties of the viscoelastic layer are presented in Table 5. To have the same
mass after replacing the elastic layer, the dimension of the viscoelastic layer must be changed.
In fact, thickness of the viscoelastic layer equivalent to the same mass is

e =
7850 · 1

950
= 8.26mm (3.2)

Table 5. Mechanical properties of the viscoelastic layer

E0 [MPa] E∞ [MPa] fcarac ρ [kg/m3] ν

10 100 1000 950 0.49

The viscoelastic material behaves as if it was elastic respectively with the moduli:

• E∞: at high frequency

• E0: low frequency

• fcarac: is the frequency of the maximum of damping.

Figure 6 presents the TL when using the viscoelastic layers. For the double layer structure,
the presented results show that in the low frequency region the same behavior is observed. The
response is governed by the mass law, although we have the same excitation and mass. It is
also noted that the small difference from the frequency 4000Hz is due to contribution of the
viscoelastic layer.

Fig. 6. Comparison between studied configurations

For the 2nd structure, the replacement of the elastic layer by a viscoelastic one generates
four cases:

1) viscoelastic-porous-elastic

2) viscoelastic-porous-viscoelastic

3) elastic-porous-elastic

4) elastic-porous-viscoelastic
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It is observed that adding the viscoelastic layer leads to a clear difference between these four
cases: TL significantly changes when the plane wave penetrates the viscoelastic medium. If the
incident wave penetrates first the viscoelastic medium it is seen that the sound insulation is
very high. Also, it is observed that the peak of the frequency of coincidence moves to the low
frequency range.
Finally, these comparisons show an improvement of the sound insulation for three-layer con-

figurations, especially that one which takes the viscoelastic layer and the steel layer to extremity.
This is explained by the damping effect of the viscoelastic material.

3.2.2. Effect of angle of incidence

Figure 7 shows the attenuation index TL according to the frequency computed for four
angles of incidence. The results show that the acoustic transparency strongly depends on the
angle of incidence. It is observed that when the incident angle increases, the TL increases. The
coincidence frequencies move to the high frequency range as the angle increases.

Fig. 7. Effect of the angle of incidence for the configuration (viscoelastic-porous-elastic)

However, we can notice a singular difference at the critical frequency particularly clear for
θ = 0.
On the other hand, in Fig. 8, it is clearly observed that the TL is less important if the angle

of incidence increases, but the frequency of coincidence retains almost the same position.
As we have seen in the two configurations, the variations in the angle of incidence are not

the same. This explains why the viscoelastic layer depends on the angle of excitation.

Fig. 8. Effect of the angle of incidence for the configuration (elastic-porous-elastic)
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4. Parametric study

In this part, we will choose the configuration which isolates much better than other configurations
(viscoelastic-porous-elastic). We are interested in the effect of the porous parameters on the TL
of this multilayer structure. The Allard model is used to describe the porous materials. Eight
parameters are used: porosity, tortuosity, flux resistivity, viscous lengths and lengths of thermal
characteristics, Young’s modulus and Poisson’s coefficient. The influence of each of these physical
parameters on the loss of transmission is studied and discussed in the following Section.

Influence of porosity. Figure 9a presents the effect of porosity – there is no clear influence
on the TL of the studied configuration in low frequency band but the higher is porosity,
the more absorbent is the material in high frequencies.

Influence of tortuosity. Figure 9b presents the effect of tortuosity – it is seen that an increase
in the tortuosity increases the TL just in the high frequency region 1800Hz-10000 Hz.
Tortuosity mainly affects the location of the quarter-wavelength peaks.

Influence of density of the skeleton. As presented in Fig. 10a, if density of the skeleton
increases, there will be a shift of the absorption peaks to the low frequency area and
the absorption peaks are large. Moreover, density of this material is considered to be an
important factor that governs the sound absorption behavior of the material. At the same
time, the cost of an acoustical material is directly related to its density.

Influence of Young’s modulus. Figure 10b shows that an increase of Young’s modulus of
the skeleton generates an increase in the rigidity of the skeleton over which the absorption
peaks shift to the high frequency area. In our study, we focus on the influence of the porous
layer of sound insulation of sandwich plates in the frequency range 100Hz-10000 Hz, for
this reason, we chose Young’s modulus for the skeleton of the order of 0.1MP.

Influence of characteristic length. Figure 11a presents the effect of characteristic length.
In the frequency range between 100Hz-250H,z the characteristic length has no effects on
the TL. In the frequency range 300Hz-2500 Hz, the more characteristic length decreases,
the more viscous dissipation is important, and TL increases. At high frequencies, charac-
teristic lengths represent no effects on the TL.

Influence of resistivity. The variation of the flow resistivity has no effect on the reduction
index as presented in Fig. 11b.

Influence of Poisson’s ratio. Figure 12a shows the effect of Poisson’s ratio on TL. In the
frequency band 100Hz-220 Hz, an increase in the coefficient occurs at an increase in the
transmission loss TL. On the contrary, in the frequency band 220Hz-5000 Hz, this frequ-
ency range shows a drop of TL down to 980Hz, called the resonance frequency, and in the
zone 5000Hz-10000 Hz, if the Poisson ratio is increased, the transmission loss increases.
Then, the more Poisson’s ratio increases, the more the shear modulus decreases and the
more absorption peaks are shifted towards the high-frequency zone.

Influence of foam thickness. For thickness variation of the order of a few millimeters
(Fig. 12b), the greater the thickness, the more the transmission loss coefficient increases in
the high frequency zone 180Hz-10000 Hz and the more the absorption peaks is shifted to
the low-frequency area. A greater thickness allows a shock-absorbing effect in the behavior
of the multilayer.
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Fig. 9. Influence of (a) porous material porosity and (b) porous material tortuosity on TL of the
viscoelastic-porous-elastic configuration

Fig. 10. Influence of (a) porous skeleton density and (b) Young’s modulus on TL of the
viscoelastic-porous-elastic configuration

Fig. 11. Influence of (a) porous characteristic length and (b) flow resistivity on TL of the
viscoelastic-porous-elastic configuration

Fig. 12. Influence of (a) porous Poisson’s ratio and (b) thickness of the porous material on TL of the
viscoelastic-porous-elastic configuration
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5. Conclusion

This article investigates the loss of sound transmission in multilayer configurations composed
of porous, elastic and viscoelastic materials. A transfer matrix method has been developed to
predict the acoustic behavior of a multilayer panel. The results were compared with experiments
found in the literature. A comparison was made between all the configurations in order to find
the best structure of the multilayer panel in terms of sound insulation. This comparison shows
the effect of the damping of the viscoelastic layer which increases the loss of transmission (TL)
as a function of the frequency.
Numerical simulations have been carried out to study the effects of porous parameters on the

transmission loss for the best chosen configuration (viscoelastic-porous-elastic). This parametric
study shows that porous material parameters like Young’s modulus, Poisson’s ratio and its
thickness have a clear influence on the loss by transmission. The observed results are very useful
for researchers and developers.
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