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Small deviations between turbine blades exist due to manufacturing tolerances or material
inhomogeneities. This effect is called mistuning and usually causes increased vibration am-
plitudes and also a lower service life expectancy of bladed disks or so called blisks (bladed
integrated disk). The major resulting problem is to estimate the maximum amplitude with
respect to these deviations. Due to the probability distribution of these deviations, statistical
methods are used to predict the maximum amplitude. State of the art is the Monte-Carlo
simulation which is based on a high number of randomly re-arranged input parameters. The
aim of this paper is to introduce a useful method to calculate the probability distribution of
the maximum amplitude of a mistuned blisk with respect to the random input parameters.
First, the applied reduction method is presented to initiate the sensitivity analysis. This
reduction method enables the calculation of the frequency response function (FRF) of a
Finite Element Model (FEM) in a reasonable calculation time. Based on the Taylor series
approximation, the sensitivity of the vibration amplitude depending on normally distribu-
ted input parameters is calculated and therewith, it is possible to estimate the maximum
amplitude. Calculating only a single frequency response function shows a good agreement
with the results of over 1000 Monte-Carlo simulations.
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Nomenclature
dy — structural damping o — standard deviation
k — blade index 1 — identity matrix
U — modal displacement K, — stiffness matrix of blades
T — geometric displacement K,; — stiffness matrix of one disk segment
EO — engine order K{} — stiffness matrix of blades, type A
N — number of blades [~] — reduced system matrices
0  — mistuning factors ﬂ — absolute amplitude
o' — tolerance interval []" ~ Hermitian transpose

1. Introduction

A blade integrated disk (blisk), i.e. blades and disk made out of one piece, has a lot of tech-
nical benefits like weight reduction or omission of fretting between the blade and disk. This
causes lower damping and higher structural coupling between the blades. Due to small devia-
tions between the blade properties, energy localization can occur causing considerably higher
vibration amplitudes of a few blades. Whitehead (1966) gave a limit for the maximum vibration
amplitude of a mistuned blisk. This theoretical maximum is existent, if all modes have the same
eigenfrequency and are in phase at one blade position.
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The dynamical behavior of one blade mode can be simulated with a cyclic lumped-mass
model (see e.g. Griffin and Hoosac, 1984). The benefits of such a simple model is the simple
dynamical behavior and the low calculation time. However, different mode families and multiple
mode shapes cannot be described by this model. On the other hand, high computational cost is
inevitable to solve a full Finite Element model of a mistuned blisk. Especially for parameter stu-
dies, a high number of high-resolution FRF’s is necessary. Therefore, a lot of different reduction
methods are developed to calculate the FRF of a mistuned blisk with a lower computational
effort.

There are two ways that are frequently used to reduce the number of DOF of a mistuned
blisk. On the one hand, the model can be described by the system modes (called Subset of
Nominal Modes, SNM), which is described in Yang and Griffin (2001), extended to geometric
mistuning in Sinha (2009) and compared to the first version of the SNM in Bhartiya and Sin-
ha (2011). The model of the whole blisk is divided into single sectors which could be reduced
by a modal transformation using the modes of the segment. Afterwards, the mistuned stiff-
ness matrix can be calculated very efficiently, and a good agreement to the full model can be
shown. If there is only one mode describing the blade dominant vibration, this method can
be extended to the Fundamental Model of Mistuning (FMM), which was introduced in Feiner
and Griffin (2002). The main condition is that the mode shape remains almost unchanged and
only small difference occurs between the blades eigenfrequencies. The main benefit is that the
knowledge of the system matrices of the Finite Element model is not required. This method is
very useful for the identification of mistunig, see Shuai and Jianyao (2010), Feiner and Griffin
(2004a,b).

On the other hand, one sector can be divided into a blade and a disk sector. After mo-
dal reduction of these components, the matrices are coupled and the dynamical behavior
of the whole mistuned blisk can be calculated. This so-called Component Mode Synthesis
(see e.g. Bladh et al., 2001a,b) needs more computational effort to regard mistuning, but is
much more flexible (see Moyroud et al. (2002), for comparison, Castanier and Pierre (2006)
for an overview). It is assumed that the disk is cyclic symmetric. Thus it can be described
by cyclic boundary conditions (see Thomas (1979) for a description). The DOFs of the bla-
de are reduced by the well-known Craig Bampton method (see Craig and Bampton, 1968;
Craig, 2000). This method was extended in Hohl et al. (2011) using a reduction of the co-
upling nodes using Wave-Based Substructuring Cermelj et al. (2008) and a secondary modal
reduction.

To analyze the influence of mistuning, Monte-Carlo Simulation (MCS) can be used to find
an optimal pattern or to find the maximum amplitude of a given probability distribution of the
eigenfrequencies, see Hohl et al. (2011). In Bladh et al. (2001), it is shown that only 50 MCS
are necessary to fit the probability density function (PDF) of the maximum vibration amplitude
over all frequencies. The PDF is fitted with a Weibull distribution. In Mignolet and Hu (1997), a
direct prediction method describes how to find the maximum amplitude for one frequency using
the cumulates of the normal distributions. The distribution of a lumped-mass model with one
DOF per segment results in a Gaussian distribution.

The presented paper introduces a new method to find the Gaussian distribution of a mistuned
blisk. The aim of the paper is to show the benefits of these methods and its possible application.
First, the used reduction method is described and the universal validity is given. Thereafter, high
order sensitivity analysis is shown and compared to the MCS. The second case study emphasizes
its versatile application spectrum based on an intentional mistuned example. Therewith, the
dynamical behavior of a mistuned blisk can be analyzed depending on different mistuning factors,
engine order, or blade pattern.
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2. Reduction method

The first example analyzed is a simplified blisk with N = 12 blades (see picture in Fig. 1).
This blisk exhibits the typical dynamical behavior of a blisk without spinning effects like spin
softening, centrifugal stiffening or Coriolis effects. The blisk is cyclic symmetric with 12 blades
ignoring manufacturing tolerances. Thus, cyclic symmetry can be used to analyze the full blisk
regarding only one sector.

Fig. 1. Picture of the analyzed blisk

Excitation
node Monitor
node

Blade
(DOF = 6303)

Coupling
nodes

Left
nodes

w Right

nodes

Vlv
Yy z
Disk

(DOF = 8019)

Blisk
segment
(DOF = 14841)

Fig. 2. Finite Element mesh with special nodes of interest

In Fig. 2, the mesh of such a sector is shown. The mesh of the whole system has about
170000 degrees of freedom (DOF) and a harmonic analysis of the vibration amplitudes cannot
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be solved at a common PC in a reasonable time, especially if parameter variations are processed
or optimization problems are considered. Regarding cyclic symmetry, the number of DOFs is
reduced to 14841 for the calculation. The excitation node and the monitor node are located at
the blade tip, and the direction of excitation and monitoring is the z-direction. Of course, the
following shown method can be used to analyze a blisk with any arbitrary geometry.

In Fig. 3, the nodal diameter diagram is illustrated for the first four mode families. The
first mode family is well separated, and will be used for the analysis in this paper. Nevertheless,
the results are verified for other mode families as well. Some chosen mode shapes of the tuned

system are depicted in Fig. 3.
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Fig. 3. Nodal diameter diagram

In general, the equation of the dynamical system can be written as

Mi(t) + Dx(t) + Kx(t) = F(t) (2.1)

with M, D, and K as the mass, damping, and stiffness matrix. The excitation force vector F(t)
is assumed to be harmonic in time with a constant phase shift between the blades depending on

the engine order £O

1
F(t) = Fel? = | e k¢ | foif (2.2)
671(1\}71)¢
with the phase shift
2nEO
o= WN = const (2.3)
The damping is modeled as structural damping depending on the stiffness matrix
d
D= 2K (2.4)

(9]
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Using the modal transformation into the frequency domain with the harmonic approach
x(t) = xexp(if2t), Eq. (2.1) reads

%(2) = [-M2? + (1 + ido)K]'F (2.5)

The attentive reader notices that the equation of motion is build up for a linear model. The
following process will be described for such a model. Nevertheless, it will be very simple to
include rotating effects like centrifugal or Coriolis forces. Therefore, the matrices have to be
checked for nonsymmetry and varity over the rotation speed. The following reduction method
is limited to linear models, but other reduction methods for nonlinear models can be used.

For a large number of DOF's a lot of computational effort is required to calculate the combined
matrix (—M2? + (1 +idg)K) L.

The chosen reduction method is based on the Component Mode Synthesis (CMS) extended
by the Wave-Based Substructuring (WBS) (see Hohl et al., 2011). Firstly, the structural matrices
are divided into master nodes (m) and slave nodes (s) as described in Craig and Bampton (1968).
The master nodes are the coupling nodes between the blades and the disk (see Fig. 2). The slave
nodes are transformed to a small basis of mode shapes. Therefore, the reduced stiffness matrix I~{b
of one blade b is obtained by

~ H
fo- [ -6 o) flem ] ) @0
where I is the identity matrix, (-)! denotes the Hermitian transformation and
U= K 'K, (2.7)
and ® is the modal matrix which contains the eigenvectors of the generalized eigenvalue problem

K@ = Mssq))\ (28)

Accordingly, the mass matrix is subdivided and reduced. The disk can be reduced using a cyclic
symmetric model as shown in Thomas (1979). Thus, all tuned sectors have the same dynamic
properties. To couple the segments, it is assumed that the nodes on the right hand side u; r
have the same motion as the nodes on the left hand side uy1,, except for the phase shift (see
Fig. 2). Hence, the displacement of the nodes can be rewritten in cyclic coordinates by

Ui L 0 exp( — 1%)
Ui M
up = uk,M =1 0 Uk’R (29)
UgR 0 I ’

for each nodal diameter k. Due to this transformation, the mass matrix and the stiffness matrix
can be formulated for each segment. After the Craig Bampton reduction of all blades, see Eq.
(2.6), the reduced matrices can be written in the matrix of the full disk by using a subset of
modes and the master nodes

Ka= K”fﬁiﬁl?rgzifiﬁs” [diag(ﬁd,ssﬂ] 21
with
Kissi =+ 0
(dieg (Kaus)] = | . (2.11)

0 o Kd,ss,N
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and just for [diag (Kgemn)] and [diag (Kg,ms)]. The coupling nodes have to be transformed into
the full system using the theory of cyclic systems

I:<1,1 I:<1,2
Kom = | K21 Koo - (2.12)

with the submatrices

N—-1
Kij= > (")) K, w0 (2.13)
h=1
where
W= e iR (2.14)

As a consequence, the size of the structural matrices of the disk is strongly decreased. Neverthe-
less, the master nodes are in physical notation and can include a lot of DOFs. These coupling
nodes are reduced by the single-value decomposition (SVD) of the modal matrix of the whole
segment including the disk and the blade

Ksegq)seg = Msegq)seg)\ (215)

The SVD of a subset of the modal matrix @, = Peeg(cpl, -), including only the coupling DOF,
is given by

®,, = UTVT (2.16)

where ¥ is a square diagonal matrix with non-negative real numbers on the diagonal. Using the
matrix U to reduce the system with U,eq = U(w, ), the behavior of the coupled nodes can be
projected in an accurate way. w is the number of waves chosen to describe the motion of the
coupling nodes. The reduction method is called Wave-Based Substructuring (WBS) which is
described in Cermelj et al. (2008). In this way, the system matrices for the blades and the disk
can be written as

CMS WBS
r~ ~ H H
ISmm Igms _ I 0 Ured 0 Kmm Kms U* o0 I 0 (2 17)
K., K. v 0 I| |K,, Ks||l0 I||lv & '

Thus, the physical DOF are described by

. U* o]l[1 ol [x,
=10 s ] 213

with a significantly smaller number of DOFs than the Finite Element model. After the assembly
of the blades and the disks, the system matrices are reduced by the second modal reduction.
This reduction is a good possibility to decouple the equation of motion, too. Therewith, equation
of motion (2.5) can be written as a scalar function

i

F
B —l\A/L"Z‘_Q2 + (1 + 1d0)I~(m

U

(2.19)

One possibility to take into account the mistuning is to detune the single blades by a factor of

Ky = 0:Kpo = Ky = 0Ky (2.20)
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This can be a variation of Young’s modulus. These factors are randomly built up by a standard
deviation g and a mean value of 1. Afterwards, the full system can be reassembled using the

subsystems

_ [diag (E{b,ss)] [dia%(f{b,ms] " 0

Ksys = [dlag (Kb,sm)] Kmm ISd,ms (221)

0 Kd,sm Kd,ss
where
61 Izb,ss 0
[diag (Kpes)] = | : (2.22)
0 5NKb ss

)

as the reduced diagonal matrix of all slave nodes of the mistuned blades. Rmm is the diagonal
matrix of the reduced coupling nodes and I~{d758 is the reduced matrix of the blisk. The mass
matrix is assembled in the same way. With the second modal reduction, the system is reduced
to a very small number of DOFs and the equations are decoupled.

In Figs. 4a and 4b, a comparison between the reduced order model (ROM) and the FEM
is given. The ROM is reduced from overall 170000 DOF to 84 DOF for the whole system
considering mistuning. To prove the capability of the reduced order model as an example a
strongly mistuned blisk is used. Young’s modulus of one blade is 20% higher than all other. To
calculate 131 frequency points, the time needed for the FEM is about 5 minutes on a standard
personal computer with a comercial Finite Element code. The calculated points are concentrated
around the eigenfrequency to guaranty the absolute amplitude. The calculation of the FRF of
the ROM (Eq. (2.19)) with 2000 frequency points requires only 5 seconds with a very good

accuracy.
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Fig. 4. Comparison between ROM and FEM: frequency response function of (a) 7th blade, (b) 9th blade

3. High order sensitivity analysis

One of the main points of interest is to calculate the maximum amplitude with respect to the
standard deviation of the mistuned blades. In this way, the maximum stress can be determined.
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Whitehead (1966) described the theoretical possible maximum of the amplitude of a mistuned
blisk by

Ama 1
Atuned 2

with N denoting the number of blades. Here it is assumed that all vibration energy of all mode
shapes is concentrated in one blade only. However, this case seems to be unreasonable for real
bladed disk geometries. The common way to analyze the maximum amplitude of a mistuned
bladed disk is the use of Monte-Carlo simulation (see Petrov, 2011; Siewert and Stiier, 2010;
Beck et al., 2012). The disadvantages are the very high calculation time and furthermore the
lack of reliability of the results, e.g. there is no statement how many MCS are necessary to have
convincing results. Using a Weibull estimation, the number of necessary MCS can be defined.
Nevertheless, a high number of simulations is needed to obtain a good agreement (50 MCS in
Bladh et al. (2001) and 500 MCS in Castanier and Pierre (2002)). Due to these problems, another
method to calculate the maximum amplitude is given by a sensitivity analysis. This approach is
motivated by Sextro et al. (2002), who described an extension of the theory of Sinha (1986) and
Sinha and Chen (1989). To calculate the maximum amplitude with a given standard deviation
of the stiffness of the blades, the sensitivity of the frequency response function is developed. By
this means, an estimation of the maximum amplitude is very efficient and a statement of the
probability of the amplitudes is given. The amplitude of the single blades can be written as

(1+VN) (3.1)

r=x0+ao (3.2)

where x( is the average of all blades. Using the reduced DOF u in place of & economizes a lot
of calculating time. It should be pointed out again that the equations of motion are decoupled
and could be solved using scalar functions. This means that for calculation of the maximum and
minimum limit of the tolerance interval of the amplitude, Eq. (3.2) can be written as

u=ug+tao (3.3)

considering the transformation finally. Based on the results of Mignolet et al. (1999), it is assumed
that the maximum amplitudes over all blades distributions at one frequency follow a Gaussian
distribution. o is the standard deviation and « the tolerance interval. & = 2 means that 95.45%
of all blade amplitudes are within the tolerance interval; for o = 3, 99.73% of all blade amplitudes
are within the interval. The definition given in Eq. (3.2) specifies the upper and lower limit for
a given interval of the vibration amplitudes. In the case of N discrete data points, the standard
deviation o is defined as

1 N
— 2
o= $ N1 k:1(uk — up) (3.4)

Here, the amplitude of the single blades are used to calculate the standard deviation. It is
assumed that the average amplitude of the vibration ug is the amplitude of the nominal, tuned
system. The amplitude of the blade k is denoted as u;. The parameters of interest are the
mistuning factors dy introduced in the previous Section. The function of the amplitude depending
on the variation factors can be approximated by a Taylor series

1 0u(dg)\ P
5) = *
u(Or) u0+hz:1h!( 3, )

(0, —1)" (3.5)

=
The derivation of the equation of motion in Eq. (2.5) with respect to the mistuning factors reads
o (0K .
8ul(5k) _(1+d01)(m)F2

D [~M2% + (1+ o)) Ko (6] (3.6)
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where only the stiffness matrix depends on the mistuning factors. K denotes the scalar entry KZ i
and M the scalar MZ - To calculate the higher terms of the Taylor series, the deviation with
the higher order is

h
0 (85 o 1+ doﬂ(%{s(,j) i (60) (3.7)
o | M2+ A+ donKio)] | '
=S
with “4+” for even h and “—” for uneven h. Using the ratio test, it can easily be shown that

the Taylor series converges if the supremum of S is less than 1. For this blisk, the maximum
is 0, = 1073 like the maximum standard deviations of the single blades. As a consequence, the
variance of the amplitude results in

2

i = <Z £(5)u; (55 ) (3.8)

In this equation, all variances are known from the system given in Eq. (2.5), except for the
deviation of the stiffness matrix from Eq. (2.21) with respect to the mistuning factors

_ 0Ky
ok flemm 5
0 00
with
0Ky Ko 0
| diag ( % )] = i 0 (3.10)
followed by
0o 0
[diag ( diag 81;;258)] _ | B (3.11)
0 0
and so on, until the last one
K 0 0
| diag ( 85;85)}: 0 . (3.12)
b,ss

In Figs. 5a and 5b, the frequency response function is shown for a random mistuning pattern.
The variance of the single blades is 1073, and three terms of the Taylor series are used. In Fig. 5a,
the first isolated mode family is shown. Obviously, the FRFs of all blades are between the upper
and the lower limit. The tolerance interval is set to @ = 2, therefore, the amplitude can be
higher by 4.55% of the cases. Due to the upper limit, the deviation of the maximum amplitude
is given for every frequency with the probability which is needed. In Fig. 5b, the region of nearby
eigenfrequencies is shown. The limits show a good agreement with the randomly mistuned blades.
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In all studies with the random mistuning, the upper limit fits well. In Fig. 6, a comparison of
three sensitivity analyses with different numbers of terms of the Taylor series are given. The
amplitudes are very close together but the behavior of the FRF is more detailed than with more
terms. Calculating 1000 MCS, the PDF of all amplitudes can be compared with the PDF of the
sensitivity analysis. The function of the PDF of the Gaussian distribution is given by

p(x) = . 127T exp[—% (x ; M)Q} (3.13)

with o derived from Eq. (3.8) and p = ug as the amplitude of the nominal system. In Figs. 7a
and 7b, the probability distributions of the MCS and the Gaussian distrubtion of the sensitivity
analysis using Eq. (3.13) are shown.
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Fig. 6. Comparison of different numbers of terms of the Taylor series (without MCS)
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with o calculated at the first eigenfrequency at 41.15Hz for FO = 1; (b) comparison between 1000 MCS
and the PDF with o calculated at the third eigenfrequency at 372.33 Hz for EO =4

4. Case study: intentional mistuning

The second model has 30 blades which have an off-axis angle. The first mode is the one of interest.
To show the generality of the reduction method, an intentional mistuning is introduced. This
case study underlines the possibilities of such a method. A comparison between the reduced
order model and the Finite-Element model is given in Hohl et al. (2011). With the sensitivity
analysis a lot of parameter studies are feasible without consulting the calculating time. One of
the most important ways to handle the increase of the amplitude is to use two different types
of blades. For this purpose, an alternative pattern is used called AB mistuning. The benefits of
this method are shown in Castanier and Pierre (2002), Han and Mignolet (2008), Mignolet et
al. (2000) and Tatzko et al. (2013). An optimal intentional mistuning pattern is found for the
frequency response including an additional random mistuning. In this way, costly statistics are
used requiring a lot of computation time. With the sensitivity analysis shown here, the intentional
mistuning can be classified as a simple method. To calculate the maximum amplitude of the
pattern, the upper limit has to be calculated just once. This method is not restricted to just two
different blade types or a geometric deviation.

The second blade is slightly thicker at its platform region, see Fig. 9. Therefore, it is necessary
to rebuild the finite element mesh. Assuming that the contact nodes are at the same locations
like the nodes of the disk, both types of blades are reduced using the Craig-Bampton with the
same master nodes, as it is described in Eq. (2.17). With the same mesh at the contact nodes,
the waves are the same for all blades. Only the reduced stiffness matrix of the blades is changed
to

oK, 0 - 0
_ 0 &6KP, -~ 0
[diag (Kb,ss)] - . . > . . (4‘1)
0 0 - iNKp,

So, it is very simple to realize the intentional mistuning with geometric differences. The intro-
duced sensitivity analysis is a suitable approach to estimate different patterns of the intentional
mistuning using as many different blade types as required. The frequency response function
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Fig. 9. Two different blade types, including intentional mistuning

has to be calculated only once to have a good estimation for the pattern. In this paper, three
different patterns are evaluated. The first version is an AB mistuning, where the blades are
set in alternation. In the second version, three blades of the same type are collected and sorted
alternately. In the third version, all blades of type A are arranged in a row, followed by all blades
of type B arranged in a row (see Fig. 10).

These patterns are examples to show the benefits of the introduced methods. The results are
unique for every blade and disk geometry and have to be reproduced for each example.

Regarding the vibration amplitude without aerodynamical coupling, the tuned system with
only one blade type has the smallest amplitude. Due to areodynamical coupling, the intentional
mistuning due to flutter or friction damping can be very useful. Nevertheless, the influence of
the inevitable random mistuning has to be taken into account. With respect to the standard
deviation of random mistuning, the three versions show small differences. With a very small
standard deviation between 10~® and 1079, version 3 is the best one. With a standard deviation
higher than 107°, version 3 is the worst one. The chosen engine order is 2.
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Figure 12 shows the normalized amplitude with different engine orders with a standard
deviation of 1076, Versions 1 and 2 are the most sensitive patterns at the first engine order.

5. Conclusions

In this paper, a new analytical method has been introduced to estimate the maximum amplitude
of a mistuned bladed disk. Its benefits are proved by a simple model with characteristic dynamic
behavior. After a short introduction of the model, the used reduction method has been presented.
Therewith, the frequency response function has been calculated in a minimum of time and with
good accuracy. Using the sensitivity analysis, the maximum amplitude for a given interval has
been estimated. For this purpose, the force response function and the maximum amplitude have
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Fig. 12. Normalized amplitude with respect to the EO with a standard deviation of 10~°

to be calculated only once. This saves a significant amount of time for optimization tools or
parameter variations. Intentional AB mistuning has been presented as a possible application.
Two types of blades have been used to analyze different patterns. The sensitivity analysis is
proved to be a good tool for estimating intentional mistuning as well.
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