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A coupling model between turbine blades with a varying rotating speed and oncoming vor-
tices is constructed, where the coupling of the structure and the fluid is simulated by the van
der Pol oscillation. Partial differential governing equations of motions for the coupled system
are obtained and discretized by using the Galerkin method. The 1:2 subharmonic resonance
and the 1:1 internal resonance are investigated with the multiple scale method and first-order
averaged equations are then derived. Nonlinear responses and bifurcation characteristics are
studied by a numerical integration method. Stability of bifurcation curves is determined
by utilizing the Routh-Hurwitz criterion. The effect of system parameters including the
detuning parameter, steady-state rotating speed, amplitude of periodic perturbation for the
rotating speed and freestream velocity on vibration responses are investigated.

Keywords: varying rotating speed, van der Pol oscillation, multiple scale method, nonlinear
response, bifurcation curve

1. Introduction

The blade is an important component in the turbomachinery, such as gas axial compressors,
wind turbines, aero-engine turbines, etc. Rotating blades are subjected to high centrifugal and
aerodynamic loads which can lead to aeroelastic problems of the blades, like flutter and vortex-
-induced vibrations (Gostelow et al., 2006). To keep safe running of the turbomachinery, analysis
of the dynamic response characteristics is of importance for the blade design.
Owing to a variety of engineering applications, dynamic analysis of rotating blades has re-

ceived broad interest. Transverse and rotational motion as well as control of vibrations for a
rotating uniform Euler-Bernoulli beam were studied by Yang et al. (2004). In addition, the ear-
ly research that focused on the problem of rotating nonconstant speed was done in the work
by Kammer and Schlack (1987). Nonlinear vibration of a variable speed rotating beam was
studied by Younesian and Esmailzadeh (2010), where the influence of various parameters was
investigated. The nonlinear dynamic response of a rotating blade with varying rotating speed
was investigated by Yao et al. (2012), and the results showed that the dynamic responses of the
rotating blade changed from periodic motions to chaotic motions with different rotating speeds.
Nonlinear oscillations and steady-state responses of a rotating compressor blade with varying ro-
tating speed were investigated by Yao et al. (2014). Staino and Basu (2013) formulated a multi-
-modal flexible wind turbine model with variable rotor speed by using a Lagrangian approach,
and anlysed the effect of the rotational speed on the edgewise vibration of the blades. The
equations of motion of a rotating composite Timoshenko beam were derived in the study of
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Georgiades et al. (2014), and the results showed that the variable rotating speed as well as a
nonzero pitch angle have important effects on the system dynamics. A more accurate nonlinear
model of a rotating cantilever beam was proposed by Kim and Chung (2016). Geometrically
nonlinear vibrations of beams with properties periodically varying along the axis were investiga-
ted by Domagalski and Jędrysiak (2016). A new model for a spinning beam under deployment
was proposed and the dynamic responses and characteristics were analyzed by Zhu and Chung
(2016). The study of forced nonlinear vibrations of a simply supported Euler-Bernoulli beam
resting on a nonlinear elastic foundation with quadratic and cubic nonlinearities was carried out
by Shahlaei-Far et al. (2016) with the homotopy analysis method. Vibration of a rotating beam
with variable speed/acceleration has been controlled by using the sandwich beam filled with
an ER fluid (Wei et al., 2006). Moreover, Warmiński and Latalski (2016) applied a nonlinear
saturation control strategy to suppress vibration of the rotating hub-beam structure.
The vortex-induced vibration of a rotating blade with the steady-state rotating speed was

investigated by Wang et al. (2016c), where the time-varying characteristic of the vortex shed-
ding was represented by a van der Pol oscillator. Moreover, the van der Pol oscillator has been
introduced as a reduced model in a number of articles to model the time-varying characteri-
stics of the fluid (Hartlen and Currie, 1970; Barron and Sen, 2009; Hemon, 1999; Gabbai and
Benaroya, 2005; Wang et al., 2016a) or the fluid-structure interaction (Barron, 2010; Lee et al.,
2006; Facchinetti et al., 2004; Keber and Wiercigroch, 2008; Wang et al., 2016b) according to
experimental and numerical studies. In addition, the effect of structural vibration on the mo-
tion of the fluid was also investigated in the above articles. Under different air flow conditions,
the dynamic behaviour of the blades becomes very complex when the rotating speed is time-
-varying, which could convert to a nonlinear system with the coupling of parametric-excitation
and self-excitation.
The motivation of this paper is to investigate the dynamic response and bifurcation cha-

racteristics of blades with varying rotating speed. The coupling model of the blade with the
varying rotating speed and the time-varying flows is derived based on the results by Wang et
al. (2016c). The analysis of the 1:2 subharmonic resonance and 1:1 internal resonance is carried
out with the multiple scale method. Four-dimensional nonlinear averaged equations are then
derived. Bifurcation curves are obtained and the effect of the system parameters on dynamic
responses are discussed in detail.

2. Modeling

2.1. Modeling of the coupling for the structure and vortices

The blade with length r and varying rotating speed Ω is assumed as a continuous uniform
straight cantilever beam based on the Euler-Bernoulli formulation in the centrifugal force field
as shown in Fig. 1.

Fig. 1. A beam with varying rotating speed

Similar to the derivation process of formulas in the study by Wang et al. (2016c), the go-
verning equation of transverse motion of a uniform cantilever beam with varying rotating speed
can be obtained as follows
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(2.1)

where w(x, t) denotes the transverse displacement of the blade, EI is the flexural rigidity of the
structure, c̃ is the viscous damping coefficient, m̃ = (ρ+ ρf )A is the total mass of the structure
and fluid, ρ and ρf are densities of the structure and air flow, respectively, A is the area of the
cross-section of the cantilever beam, Ff = 0.5ρfU

2DCL(x, t) is the lift force effecting the blade
and induced by the vortex, U =

√
V 2 + (Ωx)2 is the total velocity, V is the freestream velocity,

D denotes characteristic length of the cross-section of the beam. Here, the varying rotating
speed is expressed as Ω = Ω0 + Ω1 cosωt, representing the periodic perturbation Ω1 cosωt on
the steady-state rotating speed Ω0.
Letting v(x, t) = w(x, t)/D, z = x/r, Eq. (2.1) can be rewritten as
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with the boundary conditions v(0, t) = 0, v′(0, t) = 0, v′′(1, t) = 0, v′′′(1, t) = 0, where
ω0 =

√
EI/(m̃r4), ζ = c̃/m̃ is the damping ratio, q(z, t) = 2CL/CL0 represents a time-varying

variable of the vortical flows, CL0 is the reference lift coefficient.
Similarly, the van der Pol oscillator is applied to simulate time-varying characteristics of the

vortices as follows

∂2q(z, t)

∂t2
+ sωf [q

2(z, t) − 1]
∂q(z, t)

∂t
+ ω2fq(z, t) =M

∂2v(z, t)

∂t2
(2.3)

where ωf is the shedding frequency of the vortex, s is the van der Pol damping coefficient,
M is the linear coupling parameter representing the impact of structural vibration on the fluid
motion.

2.2. The Galerkin discretization of the coupled system

Discretization of partial differential equations (2.2) and (2.3) into a finite-dimensional system
is done according to the study by Clough and Penzien (2003), Wang et al. (2016c), letting

v(z, t) =
∞∑

i=1

vi(t)ṽi(z) (2.4)

represent an arbitrary oscillation of the structure and

q(z, t) =
∞∑

i=1

qi(t)q̃i(z) (2.5)

denote an arbitrary oscillation of the vortical flows.
The modal functions of the structure and the fluid are expressed as those used in the study

of Wang et al. (2016c), that is

ṽi(z) = cosh(βiz)− cos(βiz)−
cosh βi + cos βi
sinhβi + sin βi

[sinh(βiz)− sin(βiz)] (2.6)

and

q̃i(z) = sin(iπz) i = 1, 2, . . . (2.7)
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where βi (i = 1, 2, . . .) satisfy the equation cos β cosh β + 1 = 0 that is obtained from the
boundary conditions for the cantilever beam.

Repeating the discretization process again, the first mode motion of the structure and fluid
can be derived as follows
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dt2
+ ζ
dv1(t)

dt
+ ω20β

4
1v1(t) + a(Ω0 +Ω1 cosωt)

2v1(t)
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2]q1(t)
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[3
4
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where

a =
ρA

2m̃

2
∫ 1
0
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d2ṽ1(z)
dz2
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Equations (2.8) model the interactions between the vortical flows and the structure, which
is also a Mathieu-van der Pol type oscillation.

3. Analysis with the multiple scale method

The research by Hao and Cao (2015), Hao et al. (2016) showed that nonlinear systems can
present rich dynamic characteristics when the resonance occurs, like the primary resonance,
superharmonic/subharmonic resonance as well as the internal resonance, etc. The multiple scale
method is often utilized to understand qualitative characteristics of the system which present
resonant conditions (Nayfeh and Mook, 1979).

Introducing the scaling parameters ζ → εζ, CL0 → εCL0, s→ εs, Ω1 → εΩ1, M → εM into
Eqs. (2.8), one can obtain

d2v1(t)
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+ ω2sv1(t) + a(ε
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where ωs =
√
ω20β

4
1 + aΩ

2
0 denotes the uncoupled natural frequency of the first-order mode of

the beam.

Considering the possible 1:1 internal resonance between the structure and the fluid as well
as the 1:2 subharmonic resonance conditions, the relations of frequencies can be expressed as
ω = 2ωs + εσ, ωf = ωs + εσ1, where σ, σ1 are the detuning parameters, respectively.

Assume the approximate form of the solutions as shown in the following

v1(t) = v10(T0, T1) + εv11(T0, T1) + . . .

q1(t) = q10(T0, T1) + εq11(T0, T1) + . . .
(3.2)

Substituting solutions (3.2) into Eqs. (3.1) and equating the coefficients of like powers of ε, one
can obtain:
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— order ε0
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where
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∂
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General solutions to Eqs. (3.3) can be obtained in the complex form

v10 = A(T1)e
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−iωsT0
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iωfT0 +B(T1)e

−iωfT0
(3.5)

Substituting (3.5) into Eqs. (3.4) and considering the resonance conditions yields
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2
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where c.c. stands for the complex conjugate of the proceeding terms.

The solvability conditions of Eqs. (3.6) can be obtained by equating the coefficients of secular
terms to zero, which reads

bBeiσ1T1 + d̃Ω20Be
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The derivatives of amplitudes A and B with respect to T1 can be obtained by Eqs. (3.7), that is
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Assume that the functions A and B are expressed in polar co-ordinates, which reads

A(T1) =
a1(T1)

2
eiθ1(T1) B(T1) =

a2(T1)

2
eiθ2(T1) (3.9)
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where ak, θk (k = 1, 2) represent the amplitudes and phase angles of the responses, respectively.
The first-order averaged equations can be obtained after separating the real and imaginary parts
by substituting (3.9) into Eqs. (3.8), that is

a′1 =
1

2ωs
[(b+ d̃Ω20t)a2 sinϕ− ζωsa1 − aΩ0Ω1a1 sinφ]

θ′1 =
1

2a1ωs
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2ωf
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Mω2sa1 sinϕ− sω

2
f

( 3
16
a22 − 1

)
a2
]

θ′2 =
1

2a2ωf
Mω2sa1 cosϕ

(3.10)

where (′) denotes the derivatives with respect to T1 and ϕ = θ2 + σ1T1 − θ1, φ = σT1 − 2θ1.

The derivatives of ϕ and φ with respect to T1 can be derived by eliminating θ1 and θ2 from
Eqs. (3.10)2,4

ϕ′ =
Mω2sa1 cosϕ

2a2ωf
+ σ1 +

(b+ d̃Ω20)a2 cosϕ− aΩ0Ω1a1 cosφ

2a1ωs

φ′ = σ +
(b+ d̃Ω20)a2 cosϕ− aΩ0Ω1a1 cosφ

a1ωs

(3.11)

The equilibrium solutions of Eqs. (3.10)1,3 and (3.11) correspond to periodic motions of the
coupled system. The steady-state solutions for system (2.8) can be obtained when assuming
a′1 = 0, a

′

2 = 0, ϕ
′ = 0, φ′ = 0.

4. The nonlinear response and bifurcation analysis with different system

parameters

The research of Facchinetti et al. (2004), Keber and Wiercigroch (2008), Wang et al. (2016c)
showed that during the interaction process of the fluid and structure, the structural motion can
affect formation of the fluid as well. Therefore, the effects of the system parameters including
the detuning parameter σ, steady-state rotating speed Ω0 and the amplitude of periodic pertur-
bation Ω1 as well as freestream velocity V on the amplitudes and phase angles of the responses
under different coupling parameters M are investigated. The bifurcation curves are computed
and stability is determined by examining the eigenvalues of the corresponding characteristic
equation to Eqs. (3.10)1,3 and (3.11).

Figures 2 and 3 show the varying trends of the amplitudes a1 and a2 and phase angles
ϕ and φ (mod T ) with respect to the detuning parameter σ for the coupling parameters
M = 0.1, 0.2, 0.3, respectively. The other parameters are fixed at A = 4.2 · 10−4m2,
ρ = 7800 kg/m3, ρf = 1.225 kg/m

3, EI = 300Nm, V = 110m/s, Ω0 = 350 rad/s,
Ω1 = 0.1 rad/s, D = 0.1m, r = 0.3m, c̃ = 6Ns/m, CL0 = 0.01, ωf = 552.64 rad/s, s = 0.03,
respectively.

It can be seen from Figs. 2a,b and 3a,b that as the detuning parameter σ increases, the
trivial solutions of the amplitudes a1, a2 and the phase angles ϕ, φ jump to large two-mode
solutions via a saddle-node bifurcation at SN1, leading to the occurrence of a stable and an
unstable solution. Similarly, as the dutuning parameter σ decreases, the trivial solutions of
the amplitudes a1 and a2 and the phase angles ϕ, φ become other two-mode solutions via a
saddle-node bifurcation at SN2, resulting in a stable and an unstable solution, respectively.
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Fig. 2. Frequency-response curves of the amplitude a1 and the phase angle ϕ of the structure with
respect to the detuning parameter σ

Fig. 3. Bifurcation curves of the amplitude a2 and the phase angle φ of the fluid with respect to the
detuning parameter σ

Figures 2a and 3a show that the amplitudes a1 and a2 have the same varying trends with
respect to the varying detuning parameter. The phase angles ϕ and φ have the opposite varying
trends with respect to the varying detuning parameter, which means that there is transformation
between the two vibration modes. In addition, Figs. 2 and 3 show that the absolute value of σ
for the critical bifurcation increases and the amplitudes as well as the period of the steady-state
solutions can be increased as the coupling parameter M increases.

Figures 4 and 5 show the varying trends of the responses with respect to the steady-state ro-
tating speed Ω0 for the coupling parametersM = 0.1, 0.2, 0.3, respectively. The other parameters
are fixed at A = 4.2 · 10−4m2, ρ = 7800 kg/m3, ρf = 1.225 kg/m

3, EI = 300Nm,V=110m/s,
Ω1 = 0.1 rad/s, D = 0.1m, r = 0.3m, c̃ = 6Ns/m, CL0 = 0.01, ωf = 552.64 rad/s, s = 0.03,
σ = 0.01, respectively.

It can be seem from Figs. 4 and 5 that the trivial solution jumps to large solutions via
a saddle-node bifurcation, resulting in the occurrence of a two-mode solution consisting of a
stable solution and an unstable one. Figure 4a shows that the steady-state solutions of the
amplitude a1 decrease as the steady-state rotating speed Ω0 increases, which indicates that the
increasing of the steady-state rotating speed can suppress the large-amplitude vibrations of the
structure. Figure 5a shows that the steady-state solutions of the amplitude a2 increase as the
steady-state rotating speed Ω0 increases, which displays an inverse varying trend of the responses
comparing with those for the amplitude a1. By comparison, the stable and unstable solutions
for the phase angle ϕ as shown in Fig. 4b increase simultaneously as the steady-state rotating



38 D. Wang et al.

Fig. 4. Bifurcation curves of the amplitude a1 and the phase angle ϕ of the structure with respect to the
steady-state rotating speed Ω0

Fig. 5. Bifurcation curves of the amplitude a2 and the phase angle φ of the fluid with respect to the
steady-state rotating speed Ω0

speed Ω0 increases while the stable solutions of the phase angle φ decrease and the unstable one
increases when the steady-state rotating speed Ω0 increases, as shown in Fig. 5b. Moreover, the
critical steady-state rotating speed can decrease for the saddle-node bifurcation as the coupling
parameter M increases, that is: Ω0 = 257.9793 rad/s for M = 0.1, Ω0 = 146.8258 rad/s for
M = 0.2, Ω0 = 101.3993 rad/s forM = 0.3, respectively. In addition, an increase in the coupling
parameter M can increase the amplitudes a1 and a2 of the responses. It can be illustrated from
system (2.8) that the increasing of the coupling parameter M can excite large vibrations of the
fluid, which can in turn promote the oscillations of the structure.

Figures 6 and 7 show the bifurcation characteristics of the system responses with respect to
the amplitude Ω1 of the periodic perturbation for different coupling parameters M . The other
parameters are fixed at A = 4.2 · 10−4m2, ρ = 7800 kg/m3, ρf = 1.225 kg/m

3, EI = 300Nm,
V = 110m/s,Ω0 = 350 rad/s,D = 0.1m, r = 0.3m, c̃ = 6N s/m, CL0 = 0.01, ωf = 552.64 rad/s,
s = 0.03, σ = 0.01, respectively.

It can be seen from Figs. 6 and 7 that the trivial solution jumps to the large solution via
a saddle-node bifurcation (SN), leading to the occurrence of a two-mode solution including a
stable solution and an unstable one as the parameter Ω1 increases. Figures 6a and 7a display that
the varying trends of the amplitudes a1 and a2 with respect to the parameter Ω1 are the same to
each other, that is, the stable solutions of the amplitudes a1 and a2 increase as Ω1 increases while
the unstable solutions decrease as Ω1 increases. In comparison, the stable and unstable solutions
of the phase angles ϕ and φ have the opposite varying trend. In addition, the increasing of the
coupling parameter M can make the critical bifurcation value of the parameter Ω1 smaller, that
is, Ω1 = 0.0674 rad/s for M = 0.1, Ω1 = 0.0383 rad/s for M = 0.2 and Ω1 = 0.0286 rad/s for
M = 0.3, respectively.
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Fig. 6. Bifurcation curves of the amplitude a1 and the phase angle ϕ of the structure with respect to the
amplitude Ω1 of the periodic perturbation

Fig. 7. Bifurcation curves of the amplitude a2 and the phase angle φ of the fluid with respect to the
amplitude Ω1 of the periodic perturbation

Figures 8 and 9 display the varying trends of the responses with respect to the freestream
velocity V under different values of the coupling parameter M . The other parameters are fixed
at A = 4.2 · 10−4m2, ρ = 7800 kg/m3, ρf = 1.225 kg/m

3, EI = 300Nm, Ω0 = 350 rad/s,
Ω1 = 0.1 rad/s, D = 0.1m, r = 0.3m, c̃ = 6N s/m, CL0 = 0.01, s = 0.03, σ = 0.01, respectively.

Fig. 8. Bifurcation curves of the amplitude a1 and the phase angle ϕ of the structure with respect to the
freestream velocity V

It can be seen from Figs. 8 and 9 that the trivial solution jumps to a large solution via a
saddle-node bifurcation as the freestream velocity V increases, resulting in the occurrence of a
two-mode solution consisting of a stable solution and an unstable one. The stable and unstable
solutions of the amplitudes a1 and a2 increase when the freestream velocity V increases, as shown
in Figs. 8a and 9a which present the similar varying trends for the solutions of the amplitudes
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Fig. 9. Bifurcation curves of the amplitude a2 and the phase angle φ of the fluid with respect to the
freestream velocity V

a1 and a2. Figures 8b and 9b indicate the opposite varying trends for the stable solutions of the
phase angles ϕ and φ, namely, the solution of the phase angle ϕ increases while the solution of
the phase angle φ decreases as the freestream velocity V increases. Similarly, the increasing of
the coupling parameter M can decrease the critical freestream velocity V for the saddle-node
bifurcation of the responses.

5. Conclusions

The dynamic responses and bifurcation characteristics of turbine blades under variable rotating
speed have been investigated, where the rotating blade was modeled as a cantilever beam and
the effect of the oncoming vortices was represented as the van der Pol oscillation. And the
acceleration coupling was considered to simulate the influence of the vibration of the beam on
the van der Pol oscillation. The first-order mode vibrations of the coupled system were obtained
by the Galerkin discretization. The 1:2 subharmonic resonance and the 1:1 internal resonance for
the coupled system were studied by using the multiple scale method. The averaged equations were
derived and the bifurcation curves were computed. Effects of the system parameters including
the dutuning parameter σ, the steady-state rotating speed Ω0, the amplitude Ω1 of the periodic
perturbation as well as the freestream velocity V on the responses were investigated.

The phenomenon of saddle-node bifurcation was found to occur under certain parameter
conditions. The bifurcation analysis indicates that the increasing of the coupling parameter M
can delay the saddle-node bifurcation of the responses with respect to the detuning parameter
while the increasing of the coupling parameter M can make the saddle-node bifurcation occur
earlier for the responses with respect to the steady-state rotating speed Ω0, the amplitude Ω1
of the periodic perturbation as well as the freestream velocity V . Moreover, the increasing of
the steady-state rotating speed can suppress large vibration of the structure. The amplitudes
of vibrations of the structure and fluid can be increased as the freestream velocity V increases.
The opposite varying trends for the amplitudes and phase angles with respect to the system
parameters indicate the energy transfer between the vibrations of the fluid and the structure.
The results can help one to understand the interaction of the fluid and the structure.
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