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This paper considers the nonlinear dynamics of an electromechanical device with a pendulum
arm and a Nonlinear Energy Sink (NES) put on the point of the pendulum suspension. It is
shown that the (NES) is capable of absorbing energy from the system. The numerical results
are shown in a bifurcation diagram, phase plane, Poincaré map and Lyapunov exponents.
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1. Introduction

Mechanical oscillatory systems (e.g., a pendulum system which is a basic subsystem of any
robot) are of special interest for research and applications as examples of simple systems that
may exhibit complex nonlinear behavior. That is why mechanical pendulum-like models of robot
arms and mechanical manipulators have recently drawn attention of researchers (Mogo and Wo-
afo, 2007). An interesting example of a driven pendulum device coupled with an electric circuit
through a magnetic field. This enters the class of nonlinear electromechanical devices with a
pendulum arm. It has been found that the device displays different nonlinear behavior, inclu-
ding chaos (Mogo and Woafo, 2007). SDRE control and sensibility analysis of a chaotic double
pendulum arm excited by a RLC circuit based nonlinear shaker was presented by Tusset et al.
(2014, 2015). A non-ideal electromechanical damping vibration absorber, the Sommerfeld effect
and energy transfer were studied by Felix and Balthazar (2009). The energy pumping, synchro-
nization and beat phenomenon in a non-ideal structure coupled with an essentially nonlinear
oscillator were discussed by Felix et al. (2009).

This paper deals with a thin rod mounted to a plate to which electrical windings are ap-
plied. Connected to an electric circuit (Tusset et al., 2014, 2015), its oscillations are due to the
electromagnetic force resulting from two identical and repulsive permanent magnets (Mogo and
Woafo, 2007) as well as a Nonlinear Energy Sink. NES has recently drawn attention of many
researchers. The NES method represents a new and unique application of strong nonlinearity.
The nonlinear energy sink is a local, simple, lightweight subsystem capable of completely alte-
ring the global behavior of the primary system to which it is attached (Vakakis et al., 2008).
Elimination of chaotic behavior in a non-ideal portal frame structural system using both passive
and active controls were described by Tusset et al. (2013). Steady-state dynamics of a linear
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structure weakly coupled to an essentially nonlinear oscillator was studied by Malatkar and
Nayfeh (2007).
Steady state passive nonlinear energy pumping in coupled oscillators was studied by Jiang

et al. (2003). Introduction of passive nonlinear energy sinks to linear systems was discussed by
Vakakis (2001). Energy pumping in nonlinear mechanical oscillators for resonance capture was
examined by Vakakis and Gendelman (2001). The energy transfer between linear and non-linear
oscillators was investigated by Dantas and Balthazar (2008).

Fig. 1. Idealization of a NES applied to a pendulum arm, ur and uθ are the polar unit vectors

In this work, a NES device is applied to the free end of the pendulum (Fig. 1). This set-up
is a system with three degrees of freedom: (i) charge q of the nonlinear condenser, (ii) angular
displacement θ of the pendulum, (iii) displacement ζ of the Mnes.

2. Equations of motion

2.1. Equation of the electric drive

The electric oscillator used to drive the pendulum is an RLC series circuit with a sinusoidal
excitation e(t) = v0 cosΩt (v0 and Ω being, respectively, the amplitude and frequency, and
t time). Denoting the forced mesh current i in the RLC circuit, as shown in Fig. 1, applying
Kirchhoff’s rules, and taking into account the contribution of Lenz’s electromotive voltage for
N turns by integrating over θ from zero to 2πN (e = −0.5NBσ2l2 dθ/dt) one obtains

L
di

dt
+Ri+ Vc(q)− e = e(t) (2.1)

where Ldi/dt, Ri, VC(q) are the voltages across the selenoid of the inductance L, the resistor R,
and the nonlinear capacitor C, respectively. In this electromechanical model, the electrical non-
linear term is introduced by considering that the voltage of the capacitor is a nonlinear function
of the instantaneous electrical charge q of the following form

Vc(q) =
1

C0
q + a3q

3 (2.2)

where C0 is the linear value of C and a3 is the nonlinear coefficient depending on the type of
the capacitor used. Inserting Eq. (2.2) in Eq. (2.1), the electric part of the model is described
by the following nonlinear differential equation

d2q

dt2
+
R

L

dq

dt
+ ω2eq +

a3
L
q3 +
NBσ2l2

2L

dθ

dt
=
v0
L
cos(Ωt) (2.3)

where ω2e = 1/(LC0) is the resonance frequency of the electric oscillator.
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2.2. Equation of the pendulum arm and the Nonlinear Energy Sink

In Fig. 1, the forces acting on the pendulum are represented. The mechanism consists of a
uniform thin rod OA of mass m and length l, having a plate to which N conducting electric
windings of length σl each are applied, with σ = 1/2. The pendulum is hinged at O about a
horizontal axis, with only the portion σl of the rod in the magnetic field. The total mass of the
conducting wire and the plate bathing in the magnetic field have been neglected compared to
the pendulum mass. The moment of inertia of the output is then reduced to

IO =
1

3
ml2 +Mnesl

2 (2.4)

where m, Mnes are mass of the pendulum and NES, respectively. When the current i flows
through the conducting wire in the magnetic field, there appear, according to the directions of
the current (upward or downward), two identical Laplace forces (direction and intensity) whose
resultant f sets the pendulum into motion in a viscous medium with the frictional coefficient β.
According to the equation for kinetic moment, the moment of inertia IO times the angular
acceleration equals the sum of torques due to forces applied to the pendulum. The Laplace force
f = NBσl dq/dt is applied to the center of the plate gravity and friction forces. NES spring and
friction forces are applied to the free end of the pendulum.

Thus, the pendulum motion is described by

IO
d2θ

dt2
=
NBσ2l2

2

dq

dt
−

mgl

2
sin θ −

βl2

4

dθ

dt
− Cnesl

(

l
dθ

dt
−

dζ

dt

)

−Knesl(lθ − ζ)
n (2.5)

where n = 1 and n = 3. It can be divided by the moment of inertia to obtain this equation in
the standard form

d2θ

dt2
=

NBσ2l2

2
(

m

3 +Mnes
)

l2

dq

dt
−

mgl

2
(

m

3 +Mnes
)

l2
sin θ −

βl2

4
(

m

3 +Mnes
)

l2

dθ

dt

−

Cnesl
(

m

3 +Mnes
)

l2

(

l
dθ

dt
−

dζ

dt

)

−

Knesl
(

m

3 +Mnes
)

l2
(lθ − ζ)n

d2θ

dt2
+ ω2m sin θ +

β

4
(

m

3 +Mnes
)

dθ

dt
−

NBσ2

2
(

m

3 +Mnes
)

dq

dt
+

Cnes
(

m

3 +Mnes
)

l

(

l
dθ

dt
−

dζ

dt

)

+
Knes

(

m

3 +Mnes
)

l
(lθ − ζ)n = 0

(2.6)

where ω2m = mg/[2(
m

3 +Mnes)l] is the resonance frequency of the pendulum, Cnes is the damping
coefficients of the NES, Knes is the spring coefficient of the NES.

According to Newton’s second law, the NES motion is described by

Mnes
d2ζ

dt2
= −Cnes

(dζ

dt
− l
dθ

dt

)

−Knes(ζ − lθ)
n (2.7)

It can be divided by mass of the NES to obtain this equation in the standard form

d2ζ

dt2
+
Cnes
Mnes

(dζ

dt
− l
dθ

dt

)

+
Knes
Mnes

(ζ − lθ)n = 0 (2.8)
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2.3. Nondimensional equations and values of the parameter

Using the transformation

x =
q

Q0
y =
θ

θ0
z =

ζ

lθ0
τ = ωet

dq

dt
= Q0ωe

dx

dτ

dθ

dt
= θ0ωe

dy

dτ

dζ

dt
= lθ0ωe

dz

dτ

d2q

dt2
= Q0ω

2
e

d2x

dτ2
d2θ

dt2
= θ0ω

2
e

d2y

dτ2
d2ζ

dt2
= lθ0ω

2
e

d2z

dτ2

(2.9)

where x, y, τ are dimensionless variables, Q0 is the reference charge of the condenser, and θ0 is
the reference pendulum angular displacement. The equations of motion of the complete system
can be written as follows

d2x

dτ2
+
R

Lωe

dx

dτ
+ x+

a3Q
2
0

Lω2e
x3 +

NBσ2l2θ0
2LQ0ωe

dy

dτ
=
v0
Q0ω2eL

cos
(Ω

ωe
τ
)

d2y

dτ2
=

NBσ2

2
(

m

3 +Mnes
)

ωeθ0
Q0
dx

dτ
−

mg

2
(

m

3 +Mnes
)

θ0ω2e l
sin(θ0y)−

β

4
(

m

3 +Mnes
)

ωe

dy

dτ

−

Cnes
(

m

3 +Mnes
)

ωe

(dy

dτ
−

dz

dτ

)

−

Knes(lθ0)
n−1

(

m

3 +Mnes
)

ω2e

(y − z)n

d2z

dτ2
+
Cnes
Mnesωe

(dz

dτ
−

dy

dτ

)

+
Knes(lθ0)

n−1

Mnesω2e
(z − y)n = 0

(2.10)

and

x′′ + µ1x
′ + x+ αx3 + γ1y

′ = E cos(ωτ)

y′′ + µ2y
′ + ω22 sin(θ

′

0y)− γ2x
′ + c2nes(y

′
− z′) + k2nes(y − z)

n = 0

z′′ + c1nes(z
′
− y′) + k1nes(z − y)

n = 0

(2.11)

where the prime denotes a derivative with respect to τ and

µ1 =
R

Lωe
α =
a3Q

2
0

Lω2e
E =

v0
LQ0ω2e

ω =
Ω

ωe
γ1 =

NBσ2l2θ0
2LQ0ωe

µ2 =
β

4
(

m

3 +mnes
)

ωe

ω22 =
ω2m
ω2eθ0

γ2 =
NBσ2Q0

2
(

m

3 +mnes
)

ωeθ0
c1nes =

Cnes
mnesωe

c2nes =
Cnes

(

m

3 +Mnes
)

ωe
k1nes =

Knes(lθ0)
n−1

Mnesω2e
k2nes =

Knes(lθ0)n−1
(

m

3
+Mnes

)

ω2
e

The physical parameters used are the following: C0 = 0.11 F, a3 = 158VC
−3, Q0 = 0.24 C,

R = 0.97 Ω, L = 1.15 H, B = 0.02 T, N = 685, θ0 = π rad, l = 0.465 m, g = 9.81 m/s
2,

m = 1 kg, Mnes = 0.1 kg, β = 0.49 Ns/m, Ω = 5.6 rad/s, σ = 0.5, Knes = 1.5 N/m,
Cnes = 0.3 Ns/m.

This gives the following values for non-dimensional constants: ω = 2, ω2 = 1, µ1 = 0.30,
µ2 = 0.1, α = 1, γ1 = 1.5, γ2 = 0.1, c1nes = 1, c2nes = 5, k1nes = 2, k2nes = 8.
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2.4. Bifurcation structures and basin of chaoticity

The aim of this subsection is to find how chaos arises in our electromechanical model as the
parameters of the system evolve. For this purpose, we numerically solve equations of motion
(2.11) and plot the resulting bifurcation diagrams, Lyapunov exponents, phase planes and Po-
incare maps as E, ω, ω2, α, µ1, µ2, γ1, γ2, c1nes, c2nes, k1nes, k2nes varies. Figures 2 and 3 show
the non-dimensional amplitude diagram for the pendulum arm as the other non-dimensional

Fig. 2. Amplitude of the pendulum arm versus (a) excitation amplitude E, (b) excitation frequency ω;
bleu lines n = 1, black lines n = 3, grey lines without NES

Fig. 3. Amplitude of the pendulum arm versus (a) function of α, (b) function of ω2, (c) function of µ1,
(d) function of µ2, (e) function of γ1, (f) function of γ2; bleu lines n = 1, black lines n = 3,

grey lines without NES
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parameters (E, ω, ω2, α, µ1, µ2, γ1, γ2) vary. The dark grey lines are shown for n = 1, the black
lines for n = 3 and the grey ones for without NES. The investigation of these figures shows that
the pendulum arm with NES and n = 3 diminishes the chaotic effect and amplitude.

Figure 4 shows the non-dimensional amplitude diagram for the pandulum arm as the other
non-dimensional parameters (c1nes, c2nes, k1nes, k2nes) vary. The dark grey lines are for n = 1, the
black lines for n = 3. It is clear that for n = 3 the chaotic effect and amplitude are diminished.

Fig. 4. Amplitude of the pendulum arm versus (a) function of c1nes, (b) function of c2nes,
(c) function of k1nes, (d) function of k2nes; dark grey lines n = 1, black lines n = 3

Table 1 shows the stability condition as a function of E, ω, ω2, α, γ2, k1nes, k2nes, c1nes, c2nes.
It has been constructed with Figs. 5-8 and Figs. 10-14. According to this Table, the pendulum
arm with NES and n = 3 diminishes the chaotic effect and amplitude. Figure 9 shows that only
for µ1 < 0.01 the system exhibits chaotic effect without NES.

Fig. 5. Bifurcation diagrams and Lyapunov exponents of the pendulum arm as functions of E in the
y direction, (a) NES, n = 1, (b) NES n = 3, (c) without NES. The other parameters are E = 30, ω = 2,

µ1 = 0.3, µ2 = 0.1, θ0 = π, γ1 = 1.5, γ2 = 0.1, c1nes = 1, c2nes = 5, k1nes = 2, k2nes = 8;
dark grey line – bifurcation diagram, grey line – Lyapunov exponent
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Fig. 6. Bifurcation diagrams and Lyapunov exponents of the pendulum arm as functions of ω in the
y direction, (a) NES, n = 1, (b) NES n = 3, (c) without NES. The other parameters are E = 30,
ω2 = 1, µ1 = 0.3, µ2 = 0.1, θ0 = π, γ1 = 1.5, γ2 = 0.1, c1nes = 1, c2nes = 5, k1nes = 2, k2nes = 8;

dark grey line – bifurcation diagram, grey line – Lyapunov exponent

Fig. 7. Bifurcation diagrams and Lyapunov exponents of the pendulum arm as functions of ω2 in the
y direction, (a) NES, n = 1, (b) NES n = 3, (c) without NES. The other parameters are E = 30, ω = 2,

µ1 = 0.3, µ2 = 0.1, θ0 = π, γ1 = 1.5, γ2 = 0.1, c1nes = 1, c2nes = 5, k1nes = 2, k2nes = 8;
dark grey line – bifurcation diagram, grey line – Lyapunov exponent

Fig. 8. Bifurcation diagrams and Lyapunov exponents of the pendulum arm as functions of α in the
y direction, (a) NES, n = 1, (b) NES n = 3, (c) without NES. The other parameters are E = 30, ω = 2,

µ1 = 0.3, µ2 = 0.1, θ0 = π, γ1 = 1.5, γ2 = 0.1, c1nes = 1, c2nes = 5, k1nes = 2, k2nes = 8;
dark grey line – bifurcation diagram, grey line – Lyapunov exponent
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Fig. 9. Bifurcation diagrams and Lyapunov exponents of the pendulum arm as functions of µ1 in the
y direction, (a) NES, n = 1, (b) NES n = 3, (c) without NES. The other parameters are E = 30, ω = 2,

α = 1, µ2 = 0.1, θ0 = π, γ1 = 1.5, γ2 = 0.1, c1nes = 1, c2nes = 5, k1nes = 2, k2nes = 8;
dark grey line – bifurcation diagram, grey line – Lyapunov exponent

Fig. 10. Bifurcation diagrams and Lyapunov exponents of the pendulum arm as functions of γ2 in the
y direction, (a) NES, n = 1, (b) NES n = 3, (c) without NES. The other parameters are E = 30, ω = 2,

µ1 = 0.3, µ2 = 0.1, θ0 = π, α = 1, γ1 = 1.5, c1nes = 1, c2nes = 5, k1nes = 2, k2nes = 8;
dark grey line – bifurcation diagram, grey line – Lyapunov exponent

Fig. 11. Bifurcation diagrams and Lyapunov exponents of the pendulum arm as functions of k1nes with
NES, (a) n = 1, (b) n = 3. The other parameters are E = 30, ω = 2, µ1 = 0.3, µ2 = 0.1, θ0 = π, α = 1,

γ2 = 0.1, c1nes = 1, c2nes = 5, k2nes = 8; dark grey line – bifurcation diagram,
grey line – Lyapunov exponent
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Fig. 12. Bifurcation diagrams and Lyapunov exponents of the pendulum arm as functions of k2nes with
NES, (a) n = 1, (b) n = 3. . The other parameters are E = 30, ω = 2, µ1 = 0.3, µ2 = 0.1, θ0 = π, α = 1,

γ2 = 0.1, c1nes = 1, c2nes = 5, k1nes = 2; dark grey line – bifurcation diagram,
grey line – Lyapunov exponent

Fig. 13. Bifurcation diagrams and Lyapunov exponents of the pendulum arm as functions of c1nes with
NES, (a) n = 1, (b) n = 3. The other parameters are E = 30, ω = 2, µ1 = 0.3, µ2 = 0.1, θ0 = π, α = 1,

γ2 = 0.1, c1nes = 1, c2nes = 5, k1nes = 2, k2nes = 8; dark grey line – bifurcation diagram,
grey line – Lyapunov exponent

Fig. 14. Bifurcation diagrams and Lyapunov exponents of the pendulum arm as functions of c2nes with
NES, (a) n = 1, (b) n = 3. The other parameters are E = 30, ω = 2, µ1 = 0.3, µ2 = 0.1, θ0 = π, α = 1,

γ2 = 0.1, c1nes = 1, k1nes = 2, k2nes = 8; dark grey line – bifurcation diagram,
grey line – Lyapunov exponent
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Table 1. Stability conditions as a function of E, ω, ω2, α, γ2, k1nes, k2nes, c1nes, c2nes

Periodic Quasi periodic Chaotic

Fig. 5a, n = 1, E < 45, 45 < E < 57, 57 < E < 73,
various E E > 93 73 < E < 87 87 < E < 93

Fig. 5b, n = 3, E < 20, 20 < E < 28, 58 < E < 72,
various E 93 < E, 45 < E < 58, 86 < E < 93

28 < E < 45 72 < E < 86

Fig. 5c, without 5 < E < 20, E = 32, E < 5,
NES, various E E > 95 48 < E < 60 60 < E < 73,

85 < E < 95

Fig. 6a, n = 1, ω < 0.7, 1.5 < ω < 1.8, 0.7 < ω < 0.8,
various ω ω > 2.3 2.1 < ω < 2.3 1.3 < ω < 1.45

Fig. 6b, n = 3, ω < 1.45, 1.5 < ω < 1.7 1.45 < ω < 1.5,
various ω ω > 2.3 ω = 1.7

Fig. 6c, without ω < 0.4, 0.5 < ω < 0.6, 1.2 < ω < 1.5,
NES, various ω ω > 2.3 0.8 < ω < 0.9 1.6 < ω < 1.7

Fig. 7a, n = 1, 0 > ω2 < 5
various ω2
Fig. 7b, n = 3, 0 > ω2 < 5
various ω2
Fig. 7c, without ω2 < 1.3, 1.3 < ω2 < 1.6,
NES, various ω2 ω2 > 2.55, 2.5 < ω2 < 2.55

1.6 < ω2 < 2.5

Fig. 8a, n = 1, α < 2.3 2.3 < α < 3.7 α > 3.7
various α

Fig. 8b, n = 3, α < 2.2 2.3 < α < 3.7, 3.7 < α < 4.4,
various α 4.4 < α < 4.6 α > 4.6

Fig. 8c, without 0.2 < α < 0.4, 1.2 < α < 1.4, 0 < α < 0.2,
NES, various α 0.5 < α < 1, 2.2 < α < 3.4 0.4 < α < 0.5,

1.4 < α < 2.2 4.4 < α < 4.6 3.4 < α < 3.6,
3.8 < α < 4.4,
4.6 < α < 5

Fig. 10a, n = 1, 0 < γ2 < 2
various γ2
Fig. 10b, n = 3, 0 < γ2 < 0.8, 0.8 < γ2 < 1.3
various γ2 1.38 < γ2 < 2

Fig. 10c, without 0 < γ2 < 0.15, 1.9 < γ2 < 2.5 0.15 < γ2 < 1.1,
NES, various γ2 1.35 < γ2 < 1.4 1.8 < γ2 < 1.9

Fig. 11a, n = 1, 0 < k1nes < 2.1 3 < k1nes < 3.2, 2.1 < k1nes < 3,
various k1nes 4.8 < k1nes < 5, 3.1 < k1nes < 5,

6.4 < k1nes < 10 5 < k1nes < 6.4

Fig. 11b, n = 3, 6.4 < k1nes < 10 0 < k1nes < 6.4
various k1nes
Fig. 12a, n = 1, 7 < k2nes < 15 0 < k2nes < 7
various k2nes
Fig. 12b, n = 3, 0 < k2nes < 15
various k2nes
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Fig. 13a, n = 1, 0.2 < c1nes < 0.4, 0 < c1nes < 0.2 0.4 < c1nes < 0.7
various c1nes 0.7 < c1nes < 2

Fig. 13b, n = 3, 0 < c1nes < 2
various c1nes
Fig. 14a, n = 1, 0 < c2nes < 2 2 < c2nes < 20
various c2nes
Fig. 14b, n = 3, 0 < c2nes < 2 2 < c2nes < 20
various c2nes

3. Conclusion

We have studied the effect of the NES on a electro-mechanical device with a pendulum.

The system exhibits complex dynamical behavior such as multi-periodic, quasi-periodic and
chaotic responses, and these are strongly dependent on non-dimensional control parameters E, ω
and a nonlinearity coefficient α for RLC circuit, and NES parameters c1nes, c2nes, k1nes, k2nes.
Moreover, the system without NES exhibits a chaotic response depending on γ2. The NES
parameters (c1nes, c2nes, k1nes, k2nes) for n = 1 lead to chaotic responses, but for n = 3, they
induce periodic and quasi-periodic responses. It is shown that the NES is capable of absorbing
energy from the system and decreases the amplitude as well as diminishes the chaotic effect.
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