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In this paper, the present exact solutions in the plate theory using the cylindrical deflection
method and represented by the Fourier series corresponding to the oblique or Cartesian
coordinates are given for a hingely supported triangular plate subject to a distributed load in
form of a hexagonal pyramid and for a rectangular hingely supported plate subject to loading
in form of a truncated octagonal pyramid. In the case of the rectangular hingely supported
plate under the truncated octagonal pyramid load, a series of parametric solutions has been
obtained. The solutions depend on the parameter . For various values of the parameter ¢,
various load cases are found.
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1. Introduction

Accuracy assessment of FEM results can be carried out by comparing it with results obtained
by using analytical methods. Comparative analysis between benchmark solutions and the FEM
results is of practical importance. “The benchmark should have some educational merit” (Becker,
1998). Performing comparative analyses is an excellent and timely topic. This is evidenced by
studies in different fields of mechanics. For example: within the framework of linear and non-
-linear plate and shell theories, particular attention shall be paid to research by Robinson (1985),
Kamoulakos et al. (1986), NAFEMS (1990), Prinja and Clegg (1993), Becker (2001), Sze et al.
(2004), within vibration theory see Abbassian et al. (1987), theory of composites — Hardy (2001),
thermal stresses — Burrows (1985), linear elastic fracture mechanics — Pang and Leggatt (2001),
etc. The benchmark reference solutions for thin and thick plates of various shapes can be found
in NAFEMS (1990), Davies et al. (1992) where linear analysis of bending a skew plate, thick
plate, free thin square plate, clamped thin rhombic plate, cantilevered thin square plate, simply-
-supported ’solid’ square plate is carried out. Finding benchmark solutions is of great importance
in the process of verification of the FEM results.

Within the framework of the plate theory, such benchmark solutions include closed form
solutions obtained by Z. Kaczkowski in his doctoral thesis in 1953. The thesis of Zbigniew Kacz-
kowski On anisotropic plates bending analysis by superposing folded defiections, published in 1953
(Kaczkowski, 1953, 1954) is an exceptional piece of work. Without any doubt, this is both valu-
able and pioneering research paper created with great imagination and cleverness. The proposed
method of superimposing the folded deflections (as called by the Author) makes it possible, by
appropriate superposition of cylindrical bending deflections referring to the infinitely long pla-
te, to arrive at closed form solutions of anisotropic plates in form of parallelograms, rectangles
and triangles resting on Winkler’s foundation, subject to some in-plane normal tractions and
subjected to transverse loading of a certain class. The majority of solutions refer to the plates
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being hingely supported, yet Zbigniew Kaczkowski showed some other boundary conditions that
could tackled as in the case of rectangular plates clamped at the opposite parallel edges or fully
clamped.

In his famous monograph Plates. Statical Analysis (1968), about which prof. Witold Nowacki
wrote that this had been the best world wide monograph on plates, prof. Kaczkowski put forward
a series of examples of triangular plates, not solved in the pioneering work of 1953.

In this beautiful monograph, Professor wrote (p.191): “It is recommended to the reader to
find a closed form solution of the deflection of a triangular plate subject to the loading distributed
in form of a hexagonal pyramid, Fig. 1.”

d

Fig. 1. Scheme of a triangular plate subject to loading distributed in form of a hexagonal pyramid
(Kaczkowski, 1968, p. 191)

In the available literature, I was not able to find the solution to this still open problem. This
and one similar solution will be presented here in closed form solutions and represented by the
Fourier series corresponding to the oblique or Cartesian coordinates.

2. A hingely supported triangular plate subject to a distributed load in form of a
hexagonal pyramid

Let us consider an infinite isotropic plate subject to normal load p; that is a periodic function
of a variable x1 with the period ¢, antisymmetric with respect to both the original and central
points of each period. Due to the load of that kind, we obtain a folded surface that can be
represented by a function wj (1) with the folds making the angle of 60° with the axis . When,
apart from the aforementioned load, the plate is also subject to the load ps(x2) = —p1(z2) due
to which the plate deflection surface is wa(z2) = —wi(z2) as well as to the load p3(y) = p1(y)
due to which the plate deflection surface is ws(y) = wi(y). The “sum” of all three surfaces will
satisfy the conditions for the simple support along the edge of the equilateral triangle of side a
and height ¢ = a+/3/2 (Fig. 3).

For the resulting formulae to be more compact, let us introduce a new oblique co-ordinate
system z = T, 7, the co-ordinates of which make the angle of 60° (Kaczkowski, 1953).

The shape of the loading is shown in Fig. 2.

The plate domain parameterization is assumed as in Fig. 3. Let us introduce non-dimensional
coordinates, cf Fig. 3.

€ T — _ 3 ] X9 - X
512?2525 n=-_= ?=§+77 525
2.1
y - 3 2V (21)
n== §=&— 5 n=—5"1
a 3 3
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Fig. 3. Parameterization of the plate domain and the coordinates
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Fig. 4. Decomposition of the hexagonal pyramid load

The loading in Fig. 2 can be viewed as a sum of three loadings acting on an infinite plate,
see Fig. 4, hence one can write down this decomposition as

9&7) = a1 (&) — G +7) +a @) (2.2)

in which
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q11 = qo1 for 0<& < é N .
(&) = { @2 =qo(1 - 2&)  for é <& < g = —qonz1 Hhcos % zm i sin(nmé1)
q13 = —qo(1 = &) for ; <6 <1
(2.3)
Depending on the subdomain considered, the loading function can be presented as below
q(&,7) = la1, 911, 9111, 41v, Qv Qv 1, Qv 11, QVIIT, IX) (2.4)
where

%ZQM(E)—QM(E—H?)—FQH( 7) =0

% =q(§) —qr2(E+M) +qu(m) = —1+3{+ 37

% = q12(6) — 2§ +7) + quu (M) = 37 (Z_(‘)’ — 12(F) — u3E +77) + i (7) = 2 — 3¢
(é_‘; = a13(8) —a3(€+7) +au () =0 quol = q11(&) — q2(E+7) + q12(7) = 3¢

% = q11(&) = qi3(€+7) + q12(7) =2 - 37 q;—;( = qu(€) —q3(E+7M) + qu3(M) = 0
qviIii _

= q12(8) — q3(E+7) + q12(7) =31 = € -7)

or in the form of the Fourier series referred to the Cartesian, yet non-orthogonal system (Z,7)

_ > 16 cos XX sin® 2F - . - . _
q(&,M) = —qo Z g - 6 [sin(nm€) — sin(nm(§ + 7)) + sin(n77)]
n=1 n
cos ¢ sm3 & nwn nmé (25)
= —32qo Z [sin(mrf) sin? - + sin(nmn) sin? T}
or to the orthogonal system (x,y)
cos &L sin® 2L nmn ™
q(&,m) = —32q Z n2772 Kcos v cos(mrf)) sin %} (2.6)
The solution to the differential equations
1
&1 for 0<¢& < 3
d'wi (&) goct 1 9
2
-1+ & for §<§1<1
reads
1
w11(€1) for 0<& < 3
4
1 2
wi (&) = % wi2(§1) for 3< §1 < 3 (2.8)
2
wi3(§1) for 3 S &1 <1
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where
10 — 60&7 + 81¢&¢ 1 —5& 4 90€7 — 330&5 + 405¢¢ — 162€9
w1 (§1) = &1 wi2(&1) =
9720 9720 (2.9)
) —31 + 235¢1 — 63067 + 750&3 — 40567 + 81&7
w =
1S 9720
or it can be represented by the following Fourier series
4 00 NT (343 T 4 00 NT (343 T
B qocC cos ‘g sin” gt o Qoa cos g~ sin”
wy(§1) = —16 D nz::l 56 sin(nmé;) = —9 D nz::l 56 sin(nmé;)
(2.10)

The plate deflection referring to the subdomains I to IX (Fig. 3) can be put in the form

= _ q0
w(&,m) = T[wla'U)HawIHawI\hwVawVIawVHawVIHawIX] (2.11)

¢ SLE -+~ 9E + T+ 7

wr(&,7) =wi1(§) —wi(E+7) +wi () =
wrr(€,7) = wi1(§) — wi2(§ +7) + wi1 (7) = 97120 {(f +7)[15 — 90( +7)
+330E+7)° — 405 +7)° + 162 + 7))~ 1 - 60" +7°) +81E +7°)}
wrrr(€,7) = wi2(§) — wi2(§+ 1) + w1 (M) = 3240 —_[8177* — 13573 (1 — 2€)
+ 9072(1 — 68 + 6€7) — 307(1 — 11€ + 276" — 188°) + 5(1 — 128 + 66€° — 108" + 54E")]
1 N -
G735 1 (1 — §)4057" — 8101 )7’
— 45(1 — E)7(5 — 18€ + 9°) + 907*(7 — 18€ + 9€")] + (2 — 38)° }
wy = wi3(§) — wiz(§ +7) + w11 (7)

27176 (1 —&)[~5 + OF2(2E +7 — 2) + £(23 — 27€ + 98°) + 27(7 — 18€ + 98]

wry = wi2(§) —wi3(E+7) +win () =

wyr = wi(§) — wiz(€ +7) + wi2(7) = 32540 [5 + 2707 — 5407°(1 — £)

— 3E(10 — 308 + 45" — 27€°) — 3072(11 — 27€ + 1887) — 30n(1 — €)(2 — 9€ + 9¢°)]
9712 5 30 + (1 — 77)(2 — 377 + 8777 — 2437° + 16277%)
+E(10 — 608" + 81E") — 235(€ +7) + 630(€ +7)% — 750(€ +7)°

+405(€ +7)" — 81(E +7)°]

wyr = w1 (€) — wiz(€ +7) +wi2(M) =

1
9720
+(L=m)(2 — 37 + 877" — 2437° + 1627") — 26 — €1~ E)(3 — 87C + 2438 — 162¢)
—235(€ +7) + 630(€ +7)* — T50(E +7)° + 405(€ +7)* — 81(€ +7)°]

~ (L~ &) (=5 + 9€ — 98)

wy 11 = wi2(€) — wi3(§ +7) + wi2(7) = 31

wrx = wi1(€) — wis(€ +7) + wis(7) = 2£T6(1

+ 72 (=3 + 2€ +7) +7(23 — 36€ + 1827))]
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Alternatively, this function can be represented by the Fourier series corresponding to the oblique

coordinates
3n
— qoa, COS sin . — . —= _ . _
w@.m) = 009 3~ O F I i) — sin(n(@ + ) + sin(rnr)
n=1
2.12
gqoa Zcoszs1n36[,( E),erﬁ+,( ) 2n7rf} ( )
=— sin(nmé) sin® —— + sin(n77) sin® —=
D = nbmb 2 g 2
or to the orthogonal coordinates
w(En) = CIOa Z cos X sin® o [(cos nmn cos( 5)) 7T77} (2.13)
— — nmé) ) sin — .
K D — nOs6 V3 V3

The maximum deflection for £ = 1/3, 7 = 1/3 equals

11 13 qoc? 13 qoa* qoa’
= ~ 0.000250772—— 2.14
wnas =wii(3:3) = 510 b = 51880 b D (2.14)
or
R S AN qoa’ cos 5 T Sin® g sin 5
= (€= 7= ) = a0 S T
sin® 2T cog T 4
—120 B0 ~ 0.0002507725
nb7
n=2,4,6 (2.15)
1 V3 qoa’ cos 5 T sin® o nmw nmwy . nmw
Wmax —'w(f: 5,77: ?) =—18 D ngl 1676 {(COSF — COS 7) SIHF}

qoa
~ 0.000250772——
D

3. A rectangular hingely supported plate under loading in form of a truncated
octagonal pyramid

Let us find deflection of a hingely supported rectangular plate under the load shown in Fig. 5.
For various values of the parameters ¢ = e¢/c, 0 < € < 1/2, we find various load cases, as shown
in Fig. 6, by making use of non-dimensional coordinates

Z Y

== =2 1 1
¢ a =% for e=0, e=~, == (3.1)
0<e<1 0<n<1

The same loading cases, represented by the Fourier series, are shown in Fig. 7
The loading shown in Fig. 6 is a sum of two loads acting on the infinite plate, cf Fig. 8.
The non-dimensional coordinates & = x1/¢, £ = x2/c are linked with £ and 7

&1=E6—1 =6+ (3.2)

The loadings ¢1(&1), g2(&2) are expressed by

1 for 0<é& <e
aE) =T T2 for e<bi<l-c 2(&) = —0(&) (3.3)

-1 for 1—e<é& <1
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Fig. 5. The load acting on the plate
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Fig. 7. Load cases represented by the Fourier series, (a) e =0, (b) e =1/4, (c) e = 1/2
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while the loading ¢(&,7n), composed of two loadings as shown in Fig. 8, is represented by

q&n) =q—n —ql+n) (3.4)

The function ¢1(z1) can be put in the form of the Fourier series

% cos[nm(—1+ ¢)] — cos(nme) 1
2 5 f < -
n{:l n2m2(—1+ 2¢) cos(nmé,) or Uses 2
q1(r1) = - cos ™ gin3 T : (3.5)
8 Z # COS(TL?Tfl) for £ = —
e nm 2
while the function ¢(&,7n) is expressed as follows
o0 3 —1 — 1
4n2::1 cos[nwizwz—(l— 61)]+ 2(:;;5(71775) sin(nm§) sin(nmn) for 0<e< 3
q(&m) =  cos ™ sin3 T . 66
16 ngl % sin(nm¢) sin(nmn) for = 3
Similarly, the plate deflection can be written down as
w(&,n) =wi(§ —n) —wi(§+n) (3.7)
The function w (&) is of the form
A wi1(&1) for 0<€é<e
wi(§1) = 7 wi2(&1) for e<&<1-¢ (3.8)
wlg(fl) for 1—€<§< 1
where
52
wi (&) = 48[ 1468 —2¢(1 - ¢)]
—5E2 4 5¢} — 269 4 30€2e% — 20632 — 10&16* + 265
wi2(§1) =
240(1 — 2¢)
1
wi3(€1) = ——[2063 — 5E} + 10&1 (1 — 2¢ + 26%) — 5E2(5 — 2¢ + 27)

240
—2(1 — 3e + 4% — 283 + )]

The deflection of the plate is expressed through functions defined on some subdomains, as
shown in Fig. 9.
The relevant functions are

A
w(&,n) = %[wll(f n), wi2(&,n), wiz(§,n), wi4(&,n), w21 (&, 1), wa2(§, M),
wa3(&,M), waa(§,m), w31 (&, M), ws2(&, 1), ws3(§,m), w3a(§,m), wa(§,n)] (3.9)
ot 4 io: cos[nwr(l67:6—(|—_51)]+—2<;c;8(mre) sin(nm§) sin(nmn) for 0<e< %
- D o cos 2L sm3 uus 1

a4 ~ —
16 Z:: T sin(nm§) sin(nmn) for &= 5
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Fig. 9. The deflection of the plate in some subdomains

where

wia(6,m) = wi (€  eta) — wr (€ + 1) = LGl — 16(E% + 7))

wi2(&,1m) = i5(—1 +n)[5 + 16(6% +n*) — 321

wis(€,m) = 916@ FO(L+ M2+ 168 +17) — 32(¢ + 1)
wia(6,1) = (1 - l1l 1601 — 2 — 1617
w1 (€,m) = w2(§ —n) —wa(§ +1) = %nﬁ — 2560¢% + 1280¢* + 160n°
+ 2560 — 1606(—5 + 161%) + 160£2(3 + 160%)]
w2 (& m) = wa(=§+1n) —wa({ +n) = @5[25654 + 16067 (1 — 161 + 161%)

+ 5(1 + 1600 + 961 — 512n° + 2560*)]

wa3(§,m) = w21 (§,1—n) = ﬁ(l — {5+ 160£(5 + 3¢ — 1667 + 8¢%)
+32(1 — n)*[5 + 8(1 — n)? — 80¢ + 80£2]}

was (&) = waz(1 —&,m) = 76180 — &){5 +160n(1 —1)(5 + 8n — 87%)
+32(1 — )2[5 + 8(1 — £)? —80n+80n 7

wsr(€,m) = wn(€ — ) — wal€ +m) = 55 {2 (€~ mP[8(6 —m)? — 11] -

240
- g(j—ﬁ (54 8(£ +n)(50 +20(€ + 1) — 80(& +m)* + 32(£ + 77)3)]}
1

wea(€,m) = wsi (61— 1) = 5= { D€+ — 1B+ - 12— 11] - o=
1+&— 77[

64

1
256

+ 5+ 8(1+ € — 1) (50 +20(1 + € — 1) = 80(1 + € —m)? +32(1 + € —n)*)] }

—&—

)
ws3(§,m) = ws2(l —&n) = 0{ B _11]_ﬁ
64 )

2
+

I[5+82—€—n)(50+20(2 — € — ) — 802 — £ —n)* +32(2 — £ — )°)] }
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wsal€,m) = wsi (1 — 1) = 5= { 2(1— €~ P80~ €~ )~ 11] — oo
+1_§%[5+8(1 — €4+ m)(50 +20(1 — €+ 1) = 80(1 — € +1)? +32(1 - £ +)*)] }
wa(§,m) = wi(§ —n) —ws(§+n) = ﬁ{% + 2(5 —n)?[8(6 —n)? — 11]
= S50 — 185(¢ 4 ) + 160(¢ + 1)* — 40(6 +1)°] }

The plate deflection for subsequent values of the parameter ¢ is shown in Fig. 10.
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Fig. 10. The plate deflection for subsequent values of the parameter €, (a) e =0, (b) e = 1/4, (¢) e = 1/2
The maximum deflections wy,qz(€) for e =0, e = 1/4, € = 1/2 are given by

w (O)Zﬁqo_c4 (1>:ﬂqo_c4

e 30720 D N4/ 30720 D (3.10)
1 400 goct

wmas(3) = 35720 D

The exact solutions wy,q.(0) and wi,e,(1/2) are compatible with those reported by Kaczkowski
(1968).
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