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The dynamic response and isolation performance of a Quasi-Zero-Stiffness (QZS) vibration
isolator using inclined springs as negative stiffness correctors under random excitation are
presented in this paper. The probabilistic linearization method is employed to determine
the dynamic response of the QZS vibration isolator and compared with the exact solution
based on the Fokker-Planck-Kolmogorov (FPK) equation and the equivalent linearization
method. Two performance indexes (Mean Square Relative Displacement (MSRD) and Mean
Square Acceleration (MSA)) are considered to evaluate the isolation performance of the QZS
vibration isolator under random excitation and compared with the equivalent linear vibration
isolator. The results show that the MSRD of the QZS vibration isolator is always lower than
the equivalent linear vibration isolator, while the MSA of the QZS vibration isolator can be
larger or lower than the equivalent linear vibration isolator based on the values of damping
ratio and spectral density of the random excitation.
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1. Introduction

Nonlinear vibration isolators with Quasi-Zero-Stiffness (QZS) characteristic (Ibrahim, 2008) ha-
ve been developed to improve the vibration isolation performance of passive linear vibration
isolators and have drawn much attention in the engineering industry since they can provide
lower vibration isolation frequency without sacrificing the load bearing capacity. The QZS vi-
bration isolator usually comprises of a load bearing elastic element providing positive stiffness
and special mechanisms providing negative stiffness named as negative stiffness correctors. Ala-
buzhev et al. (1989) investigated the effect of negative stiffness correctors and summarized many
prototypes of QZS vibration isolators. Carrella et al. (2007), Kovacic et al. (2008) and Hao and
Cao et al. (2014) considered a QZS vibration isolator by using inclined springs as negative stif-
fness correctors and studied the static and dynamic characteristics theoretically. Le and Ahn
(2011) built a QZS vibration isolator composed of a positive stiffness mount and two symmetric
negative stiffness structures for improving vibration isolation performance of the vehicle seat.
Robertson et al. (2009), Zhou and Liu (2010) and Xu et al. (2013) used electromagnetic springs
or magnetic springs as negative stiffness correctors to build a QZS vibration isolator and studied
the static and dynamic characteristics detailedly. Liu et al. (2013) designed a QZS vibration
isolator by using Euler buckled beams as negative stiffness correctors and analyzed the dynamic
behavior theoretically. Shaw et al. (2013) used bistable composite plates as negative stiffness
correctors to form a QZS vibration isolator and investigated the dynamic response theoretically
and experimentally.
In most of the above mentioned researches, the dynamic response and vibration isolation

performance of the QZS vibration isolators under harmonic excitation have been investigated in
detail. The QZS vibration isolator can also endure shock excitation or random excitation, which
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are common in the practical engineering. Liu et al. (2013) and Wang et al. (2014) considered the
performance of the QZS vibration isolators under shock excitation systematically. But the per-
formance of the QZS vibration isolator subjected to random excitation has been rarely discussed
in detail. Linear vibration isolators under random excitation were studied fully by Harris and
Piersol (2002). Lyon (1960, 1961) investigated vibration statistics of a randomly excited hard-
spring oscillator and obtained an expression of the joint density of displacement and velocity.
Klein (1964) considered the random excitation of a nonlinear system with tangent elasticity
characteristics and studied the dynamic behavior of the nonlinear system in detail. Kirk (1988)
compared dynamic performances of three different kinds of nonlinear vibration isolators with
cubic hard, cubic soft and tangent stiffness comprehensively. Shin (2014) did experimental in-
vestigation of the vibration transmissibility of a magnet-spring vibration isolator under random
excitation.
A number of approximated analytic methods have been developed to study the dynamic

response of nonlinear vibration isolators under random excitation, such as the method based
on the Fokker-Planck-Kolmogorov (FPK) equation (Lin, 1967), equivalent linearization method
(Caughey, 1963), partial linearization method (Elishakoff and Cai, 1993), dissipation energy
balancing and weighted residuals method (Cai and Lin, 1988), and cumulant-neglect closure
method (Wu and Lin, 1984). In this paper, the probabilistic linearization method (Polidori and
Beck, 1996; Polidori et al., 2000) is used. The probabilistic linearization method finds a linear
vibration system which best approximates the true nonlinear vibration system and minimizes
the error of the FPK equation rather than the stochastic differential equation, it can yield simple
expressions to determine the desired probabilistic characteristics of the dynamic response of the
nonlinear vibration system.
The organization of this paper is as follows. A QZS vibration isolator using inclined springs

as negative stiffness correctors (Carrella et al., 2007) is presented and a brief static analysis of the
QZS vibration isolator is shown in Section 2. In Section 3, a brief description of the probabilistic
linearization method is introduced, the dynamic response of the QZS vibration isolator under
random excitation using this method is obtained and compared with the exact solution based
on the FPK equation and the equivalent linearization method. In Section 4, two performance
indexes are considered to evaluate the isolation performance of the QZS vibration isolator and
compared with an equivalent linear vibration isolator. Conclusions are drawn in Section 5.

2. Static analysis of a QZS vibration isolator

A QZS vibration isolator comprised of a vertical spring used as the load bearing element and
inclined springs used as negative stiffness correctors is shown in Fig. 1. Figure 1 also shows when
loading a mass m, the system is balanced at the static equilibrium position, and the inclined
springs are in the horizontal position. The stiffness of the vertical and inclined springs are Kv
and Kh; the initial length of the inclined springs is l0 and the length when they are in the
horizontal position is l; the damping coefficient of the damper is c; x is the displacement of the
mass from the static equilibrium position and y is the base excitation with random input.
The force-displacement and stiffness-displacement relationships of the QZS vibration isolator

are given as

F = Kv(x−y)+2Kh
(
1− l0√

x2 + l2

)
(x−y) K = Kv+2Kh−

2Khl0l
2

√
[(x− y)2 + l2]3

(2.1)

Equation (2.1) can be written in non-dimensional form as

F̂ = z + 2k
(
1− 1√

z2(1− l̂2) + l̂2

)
z K̂ = 1 + 2k − 2kl̂2√

[z2(1− l̂2) + l̂2]3
(2.2)



Investigation on a quasi-zero-stiffness vibration isolator... 623

Fig. 1. Model of a QZS vibration isolator

where z = (x − y)/xs, F̂ = F/(Kvxs), l̂ = l/l0, k = Kh/Kv , K̂ = K/Kv , xs =
√
l20 − l2 is the

static equilibrium displacement.
The non-dimensional stiffness of the QZS vibration isolator at the static equilibrium position

can be obtained by substituting z = 0 into Eq. (2.2)2

K̂s = 1 + 2k
(
1− 1
l̂

)
(2.3)

If the stiffness of the QZS vibration isolator is zero at the static equilibrium position, the
QZS characteristic can be achieved and then the value of l̂ is given as

l̂QZS =
2k

1 + 2k
(2.4)

The non-dimensional force-displacement and stiffness-displacement curves of the QZS vibra-
tion isolator for various values of l̂ when k = 1 are shown in Fig. 2. It can be seen that when
l̂ = l̂QZS, the positive stiffness of the vertical spring is balanced by the negative stiffness provided
by the inclined springs at the static equilibrium position, then the QZS characteristic can be
achieved. When l̂ < l̂QZS, the stiffness of the QZS vibration isolator is negative in the neigh-
borhood of the static equilibrium position which is an undesirable condition in the engineering
practice. When l̂ > l̂QZS, the stiffness of the QZS vibration isolator maintains a small positive

value at the static equilibrium position. So in order to keep the stiffness positive, l̂ should be
greater than or equal to l̂QZS.

Fig. 2. Non-dimensional force-displacement and stiffness-displacement curves

When the amplitude of the displacement is small, the non-dimensional force and stiffness
can be expanded as a Taylor series at the static equilibrium position z = 0 for simplicity

F̂a(z) =
(
1− 2k1− l̂

l̂

)
z + k

1− l̂2
l̂3
z3 = αz + γz3 K̂a(x̂) = α+ 3γz

2

α = 1− 2k1− l̂
l̂

γ = k
1− l̂2

l̂3

(2.5)
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The dynamic equation of the QZS vibration isolator under random base excitation using a
third-order Taylor series expansion is given as

mẍ+ c(ẋ− ẏ) + αKv(x− y) + γKv
(x− y)3
x2s

= 0 (2.6)

where the dots denote derivatives with respect to time t. Equation (2.6) can be written in
non-dimensional form as

z′′ + 2ζz′ + z + λz3 = f(T ) (2.7)

where ζ = c/(2mwn), λ = γ/α, wn =
√
αKv/m, T = wnt, f(T ) = −y′′/xs. The primes denote

derivatives with respect to T . When the base excitation is random excitation, the mathematical
expression of the non-dimensional function f(T ) can be expressed as

f(T ) =
√
S0n(T ) (2.8)

where n(T ) is a stationary zero-mean Gaussian white noise with E[n(T )n(T + τ)] = δ(τ) and
S0 is the spectral density. Then, Eq. (2.7) can be written as

z′′ + 2ζz′ + z + λz3 =
√
S0n(T ) (2.9)

3. Response of the QZS vibration isolator under random excitation

The response of the QZS vibration isolator under random excitation is obtained by using the
probabilistic linearization method. The probabilistic linearization method finds an equivalent
linear vibration system whose stationary probability density function best fits the FPK equation
of the nonlinear vibration system. Consider the Itô stochastic differential equation

dz(T ) = g(z, T )dT + h(z, T )dw(T ) (3.1)

where z ∈ Rn, g(z, T ) ∈ Rn, h(z, T ) ∈ Rn×m and w(T ) ∈ Rm is a normalized Wiener process
with E[(wi(T1)−wi(T2))(wj(T1)−wj(T2))] = |T1−T2|δij . The FPK equation is a linear equation
governing the evolution of the state transition probability density function p(z, T |z0, T0) of the
system, which is given as

∂

∂T
p(z, T |z0, T0) = L(z, T )p(z, T |z0, T0) (3.2)

where L(z, T ) is the forward Kolmogorov operator expressed as

L(z, T )ϕ(z, T ) = −
n∑

i=1

∂

∂zi
(gi(z, T )ϕ(z, T )) +

1

2

n∑

i=1

n∑

j=1

∂

∂zi

∂

∂zj
(bij(z, T )ϕ(z, T )) (3.3)

where b(z, T ) = h(z, T )hT (z, T ) ∈ Rn×n. The equivalent linear vibration system used to appro-
ximate Eq. (3.1) is defined as

dz(T ) = Aeq(σ)z(T )dT +Beq(σ)dw(T ) (3.4)

where Aeq(σ) and Beq(σ) are the matrices of appropriate dimensions and σ is a parameter vector
of the equivalent linear vibration system.
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Define Lnl(z) and Llin(z|σ) as the forward Kolmogorov operators of the nonlinear vibration
system and equivalent linear vibration system respectively. Let pnl(z) and plin(z|σ) be stationary
solutions of their corresponding FPK equations, then gives

Lnl(z)pnl(z) = 0 Llin(z|σ)plin(z|σ) = 0 (3.5)

where plin(z|σ) is the Gaussian probability density function of the equivalent linear vibration
system and depends on the parameter vector σ. The main objective of the probabilistic lineari-
zation method is to find a probability density plin(z|σ) to satisfy the following condition

Lnl(z)plin(z|σ) ≈ 0 (3.6)

The criterion for making this condition is chosen as

min
σ
‖Lnl(z)plin(z|σ)‖ (3.7)

where the norm is a standard or weighted ℜ2 norm. For any two functions: f(z), g(z) : Rn → R,
the standard ℜ2 inner product of these two functions is defined as

〈f, g〉 =
∫

Rn

f(z)g(z) dz (3.8)

For any weighted function µ(z) > 0, a weighted inner product of these two functions is
defined as

〈f, g〉µ =
∫

Rn

f(z)g(z)µ(z) dz (3.9)

So a standard ℜ2 norm and weighted ℜ2 norm of the criterion can be obtained

‖Lnl(z)plin(z|σ)‖2ℜ2 =
∫

Rn

(Lnl(z)plin(z|σ))2 dz

‖Lnl(z)plin(z|σ)‖2ℜ2(µ) =
∫

Rn

(Lnl(z)plin(z|σ))2µ(z) dz
(3.10)

The weighted function µ(z) is chosen to put emphasis in the approximations to the tails
of the probability density function of the nonlinear vibration system, which is known to be
non-Gaussian for the nonlinear vibration system.
The exact probability density function of the nonlinear vibration system based on the FPK

equation expressed by Eq. (2.9) is given by

p(z1, z2) =

√
4ζλ/(πS0)

eεK1/4(ε)
exp
[
−4ζ
S0

(1
2
z21 +

1

4
λz21 +

1

2
z22

)]
(3.11)

where z1 = z, z2 = z
′, ε = ζ/(2λS0) and K1/4 is a modified Bessel function of the second kind.

Rewriting Eq. (2.9) in form of Eq. (3.1), gives

[
dz1(T )
dz2(T )

]
=

[
z2

−2ζz2 − z1 − rz31

]
dT +

[
0√
S0

]
dw(T ) (3.12)

The associated equivalent linear vibration system is obtained as
[
dz1(T )
dz2(T )

]
=

[
0 1
−w2eq −2ζeq

] [
z1
z2

]
dT +

[
0√
S0

]
dw(T ) (3.13)
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The stationary probability density function of the equivalent linear vibration system can be
obtained as the following two terms

plin(z|w2wq, ζeq) =
4ζeqweq
2πS0

exp
[
−
(2ζeqw2eq
S0
z21 +

2ζeq
S0
z22

)]

plin(z|σ, σz2) =
1

2πσσz2
exp
[
−
( z21
2σ2
+
z22
2σ2z2

)] (3.14)

Since the damping ratio of the nonlinear vibration system is linear, the probability density
function of pnl(z2) is a Gaussian probability density function, then Eq. (3.14)2 can be obtained
as a function of the parameter σ

plin(z|σ) =
1

2πσσz2
exp
[
−
( z21
2σ2
+
z22
2σ2z2

)]
(3.15)

where σ2z2 = S0/(4ζ). The forward Kolmogorov operators of the nonlinear vibration system and
the probabilistic linearization method criterion are given by

Lnl(z)p(z) =
S0
2

∂2p(z)

∂z22
− ∂
∂z1
[z2p(z)] +

∂

∂z2
[(2ζz2 + z1 + λz

3
1)p(z)]

min
σ
‖Lnl(z)plin(z|σ)‖

(3.16)

Using the standard ℜ2 norm, Eqs. (3.16) can be written as

Lnl(z)plin(z|σ) =
[( S0
2σ4z2
− 2ζ
σ2z2

)
z22 +

( z1
σ2z1
− z1
σ2z2
− λz

3
1

σ2z2

)
z2 + 2ζ −

S0
2σ2z2

)
plin(z|σ)

min
σ
‖Lnl(z)plin(z|σ)‖2ℜ2 =

15λ2

64πσ3z2
σ5 +

3λ

16πσ3z2
σ3 +

1

16π

(
− 3λ
σz2
+
1

σ3z2

)
σ

+
[( 3
4π
ζ2 − 1

8π

) 1
σz2
− 3ζS0
8πσ3z2

+
3S20
64πσ5z2

] 1
σ
+
σz2
16πσ3

(3.17)

To minimize the criterion, let ∂minσ ‖Lnl(z)plin(z|σ)‖2ℜ2/∂σ = 0, then σ can be obtained
numerically.
σz can also be obtained by using the equivalent linearization method, then it gives

σ2z =

√
ζ2 + 3ζλS0 − ζ
6ζλ

(3.18)

Figure 3 shows the probability density function p(z) of the QZS vibration isolator using
different analytical methods. It can be seen that both the probabilistic linearization method and
equivalent linearization method give good results in the tails of the probability density function,
but the errors become larger in the peak value areas of the probability density function and the
probabilistic linearization method gives better results than the equivalent linearization method.
When l̂ increases, the parameter α increases and γ decreases, which indicates that the nonlinear
parameter λ becomes smaller, the errors of both methods become smaller in the peak value areas
of the probability density function.

4. Performance of the QZS vibration isolator under random excitation

The performance of the QZS vibration isolator under random excitation is evaluated by two
performance indexes, which are defined as follows:
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Fig. 3. Probability density function p(z) of the QZS vibration isolator using different analytic methods
(ζ = 0.02, S0 = 0.05)

(1) Mean square relative displacement (MSRD) E(z2),

(2) Mean square acceleration (MSA) E(z′′2).

It is also of interest to compare the isolation performance of the QZS vibration isolator with
an equivalent linear vibration isolator with the same load bearing capacity. Since the QZS vi-
bration isolator is comprised of the load bearing element and negative stiffness correctors, the
equivalent linear vibration isolator is the QZS vibration isolator with the negative stiffness cor-
rectors removed, then the natural frequency and damping ratio of the equivalent linear vibration
isolator can be obtained

wl =
wn√
α

ζl =
√
αζ (4.1)

4.1. Mean square relative displacement (MSRD)

The MSRD can be obtained by using both the probabilistic linearization method and equ-
ivalent linearization method, which can be clearly seen in Eq. (3.17) and Eq. (3.18). The MSRD
obtained by the probabilistic linearization method can be improved by using a weighted func-
tion. The weighted function µ(z) = 1 + z2 is used in calculating E(z2). Although the chosen
weighted function can be arbitrary, this particular function is chosen for three reasons:

(1) Give more weight to the tails of the probability density function p(z), as the probability
density function p(z) for small values of z is not as important when calculating MSRD.

(2) The weighted function should not significantly increase the computation complexity.

(3) It seems reasonable to include a z2 term in calculating E(z2). Then the weighted ℜ2 norm
of the criterion combining Eq. (3.10)2 and Eq. (3.17)1 can be obtained

min
σ
‖Lnl(z)plin(z|σ)‖2ℜ2(µ) =

105λ2

128πσ3z2
σ7 +

15(λ2 + 2λ)

64πσ3z2
σ5 +

1

32π

(
−15λ
σz2
+
3 + 6λ

σ3z2

)
σ3

+
[( 3
8π
ζ2 − 3λ

16π
− 3
16π

) 1
σz2
+
( 1
16π
− 3
16π
ζS0
) 1
σ3z2
+
3S20
128πσ5z2

]
σ

+
[3σz2
32π
+
( 3
4π
ζ2 − 1

8π

) 1
σz2
− 3ζS0
8πσ3z2

+
3S20
64πσ5z2

] 1
σ
+
σz2
16πσ3

(4.2)

To minimize the criterion, let ∂minσ ‖Lnl(z)plin(z|σ)‖2ℜ2(µ)/∂σ = 0, then σ can be obtained
numerically.
Figure 4 shows the MSRD curves of the QZS vibration isolator using different analytical

methods. The exact solutions can be determined by integrating Eq. (3.11) directly using the
numerical method. It can be seen that the probabilistic linearization method overestimates the
MSRD, while the equivalent linearization method underestimates it. The weighted probabilistic
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Fig. 4. MSRD curves of the QZS vibration isolator using different analytical methods
(ζ = 0.02, S0 = 0.05)

linearization method gives better results with the numerical results than the other two analytical
methods.
The MSRD curves of the QZS vibration isolator for different values of damping ratio and

spectral density of the random excitation using the weighted probabilistic linearization method
are shown in Fig. 5. The MSRD curves of the equivalent linear vibration isolator are also plotted
in the same figure for comparison, which are plotted in the thinner lines. The MSRD of the
equivalent linear vibration isolator is given as

σ2zl =
S0
4ζl
=
S0
4
√
αζ

(4.3)

Fig. 5. MSRD curves of the QZS vibration isolator for different values of damping ratio and spectral
density of the random excitation

The MSRD of the QZS vibration isolator is always lower than the equivalent linear vibration
isolator, which indicates that the QZS vibration isolator can achieve a better isolation perfor-
mance for the MSRD case. With an increase in the damping ratio ζ or a decrease in the spectral
density S0, the MSRD of both vibration isolators decreases. Also when the length ratio l̂ incre-
ases, the parameter α increases, γ decreases and the nonlinear parameter λ becomes smaller,
then the MSRD of the equivalent linear vibration isolator decreases, while the MSRD of the
QZS vibration isolator increases with an increase in the length ratio l̂.

4.2. Mean square acceleration (MSA)

The MSA is an important index for investigating the overall effects of various parameters on
the response of the vibration isolator. The MSA can be obtained from Eq. (2.9)

E(z′′
2
) = 4ζ2E(z′

2
) + E(z2) + 2γE(z4) + γ2E(z6) (4.4)
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The MSA can be determined by using both the probabilistic linearization method and equ-
ivalent linearization method. Using these two methods, Eq. (4.4) can be transformed as

E(z′′
2
) = ζS0 + σ

2 + 6γσ4 + 15γ2σ6 (4.5)

where E(z2) = σ2 is determined differently for these two methods. The MSA obtained by the
probabilistic linearization method can be improved by using a weighted function. In this case,
the weighted function µ(z) = 1+ (x1z+x2z

3)2 is chosen in calculating E(z′′2), where x1 and x2
are larger values in order to put more weight to the tails of the probability density function
because of the σ2, σ4 and σ6 terms exist when it determines E(z′′2). Then the weighted ℜ2
norm of the criterion can be obtained

min
σ
‖Lnl(z)plin(z|σ)‖2ℜ2(µ) =

10395λ2x22
512πσ3z2

σ11 +
945(λ2x1x2 + λx

2
2)

128πσ3z2
σ9

+
105

128π

(
−9λx

2
2

σz2
+
λ2x21 + 4λx1x2 + x

2
2

σ3z2

)
σ7 +

15

64π

[
(6x22ζ

2 − 14λx1x2 − 7x22)
1

σz2

+ (−3x22ζS0 + λ2 + 2λx21 + 2x1x2)
1

σ3z2
+
3x22S

2
0

8σ5z2

]
σ5

+
[105x22σz2
128π

+
(9x1x2ζ2

8π
− 15x1x2
16π

− 15x
2
1λ

32π

) 1
σz2

+
3

16πσ3z2

(
−3x1x2ζS0 + λ+

x21
2

)
+
9x1x2S

2
0

128πσ5z2

]
σ3

+
[15x1x2σz2
32π

+
( 3
8π
x1ζ
2 − 3λ
16π
− 3x

2
1

16π

) 1
σz2
+
( 1
16π
− 3x1
16π
ζS0
) 1
σ3z2
+
3x1S

2
0

128πσ5z2

]
σ

+
[3x21σz2
32π

+
( 3
4π
ζ2 − 1

8π

) 1
σz2
− 3ζS0
8πσ3z2

+
3S20
64πσ5z2

] 1
σ
+
σz2
16πσ3

(4.6)

To minimize the criterion, let ∂minσ ‖Lnl(z)plin(z|σ)‖2ℜ2(µ)/∂σ = 0, then σ can be obtained
numerically.
Figure 6 shows the MSA curves of the QZS vibration isolator using different analytical

methods. The exact solutions can be determined by integrating Eq. (4.4) directly using the nu-
merical method combined with Eq. (3.11). It can be seen that both the equivalent linearization
method and the probabilistic linearization method overestimate the MSA. The weighted proba-
bilistic linearization method gives better results with the numerical results than the other two
analytical methods.

Fig. 6. MSA curves of the QZS vibration isolator using different analytical methods
(ζ = 0.02, S0 = 0.05)

The MSA curves of the QZS vibration isolator for different values of damping ratio and
spectral density of the random excitation using the weighted probabilistic linearization method
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are shown in Fig. 7. The MSA curves of the equivalent linear vibration isolator are also plotted in
the same figure for comparison, which are plotted in the thinner lines. The MSA of the equivalent
linear vibration isolator is given as

E(z′′
2
l ) = (1 + 4ζ

2
l )σ
2
zl
= (1 + 4αζ2)

S0
4
√
αζ

(4.7)

It is more complicated for the MSA case. With an increase in ζ or a decrease in S0, the
MSA of both vibration isolators decrease. For smaller values of ζ, the MSA of the QZS vibration
isolator is larger than the linear one, which indicates the isolation performance of the QZS
vibration isolator is inferior to the linear one; when ζ continues to increase, the MSA is more
or less the same for both vibration isolators; when ζ reaches a higher value, the MSA of the
QZS vibration isolator is smaller than the linear one, which indicates that the QZS vibration
isolator can achieve a better isolation performance. For smaller values of S0, the MSA of the
QZS vibration isolator is smaller than the linear one; when S0 continues to increase, the MSA
is more or less the same for both vibration isolators; when S0 reaches a higher value, the MSA
of the QZS vibration isolator is larger than the linear one, then the isolation performance of the
QZS vibration isolator is inferior to the linear one. Also when the length ratio l̂ increases, the
MSA of both vibration isolators decrease.

Fig. 7. MSA curves of the QZS vibration isolator for different values of damping ratio and spectral
density of the random excitation

5. Conclusions

In this paper, the dynamic response and isolation performance of the QZS vibration isolator
under random excitation are investigated. The QZS vibration isolator is comprised of a vertical
spring providing positive stiffness and inclined springs used as negative stiffness correctors.
The probability density function of the relative displacement of the mass is obtained by using
probabilistic linearization method, and compared with the exact solution based on the FPK
equation and the equivalent linearization method. The compared results show that both the
probabilistic linearization method and equivalent linearization method give very good results in
the tails of the probability density function, but the errors become larger in the peak value areas
of the probability density function and the probabilistic linearization method gives better results
than the equivalent linearization method. When the length ratio increases, which indicates that
the nonlinear parameter λ decreases, the errors of both methods become smaller in the peak
value areas of the probability density function.

Two performance indexes (MSRD and MSA) are defined to evaluate the isolation performan-
ce of the QZS vibration isolator. The weighted probabilistic linearization method is employed to
improve the accurate results of the two performance indexes by adding a weighted function to
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the criterion. The two performance indexes obtained by the weighted probabilistic linearization
method are also compared with the numerical method, the equivalent linearization method and
the probabilistic linearization method. The weighted probabilistic linearization method gives
better results with the numerical results than the other two analytical methods.

The isolation performance of the QZS vibration isolator is also compared with an equivalent
linear vibration isolator. The MSRD of the QZS vibration isolator is always lower than the
equivalent linear vibration isolator, which indicates that the QZS vibration isolator can achieve
a better isolation performance for this case. The MSA of the QZS vibration isolator can be larger
or lower than the equivalent linear vibration isolator based on the values of damping ratio and
spectral density of the random excitation, which is different from the MSRD case. For the MSA
case, the spectral density of the random excitation should be considered first, and choose an
appropiate damping ratio for the QZS vibration isolator to provide a better random isolation
performance than the equivalent linear vibration isolator.
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