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Rubber tubes under pressure can undergo large deformations and exhibit a particular non-
linear elastic behavior. In order to reveal mechanical properties of rubber tubes subjected
to internal pressure, large deformation analysis and stability analysis have been proposed
in this paper by utilizing a modified Gent’s strain energy function. Based on the nonlinear
elastic theory, by establishing the theoretical model of a rubber tube under internal pressure,
the relationship between the internal pressure and circumferential principal stretch has been
deduced. Meanwhile stability analysis of the rubber tube has also been proposed and the
relationship between the internal pressure and the internal volume ratio has been achieved.
The effects on the deformation by different parameters and the failure reasons of the rubber
tube have been discussed, which provided a reasonable reference for the design of rubber
tubes.
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1. Introduction

Cylindrical tube structures have been a subject of interest in the recent years due to their ap-
plicability in numerous fields. In many engineering applications, cylindrical tubes are subject
to internal pressures and as a result undergo large deformations (Bertram, 1982, 1987). In the
past, the analysis of this problem was based on small deformations and on the assumption that
the material was linear elastic, but this led to prediction results not inaccurate for large defor-
mation. It is well known that rubber-like materials exhibit highly nonlinear behavior character.
In the case of nonlinear rubber tube structures undergoing large deformations, the problem is
even more acute due to geometric and material nonlinearities (Antman, 1995; Bharatha, 1967;
Green and Zerna, 1968; Ogden, 1984), and we can not utilize typical Hooke’s law to describe
the relationship between stress and strain.

From the point of view of mechanics perspective, the vital problem that should be solved is to
select the reasonable and practical strain energy density function that describes the mechanical
property of a rubber-like material. It follows from the fundamental representation theory in
continuum mechanics that the strain-energy function of an isotropic rubber-like material can be
represented in terms of either the principal invariants or principal stretches.

The pioneering work of Mooney, Rivlin and others on the nonlinear theory of elasticity sets
up the basis for the analysis of rubber-like materials under large deformations.

In 1948, Rivlin put forward the strain energy function model to isotropic hyper elastic ma-
terials (Rivlin, 1948)

W =
∞
∑

i,j=0

Cij(I1 − 3)
i(I2 − 3)

j (1.1)
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in which Cij stands for the material constant; I1 and I2 are, respectively, the first and second
invariants of the left Cuachy-Green deformation tensor.
Taking the linear combination of the Rivlin model, we can get the Mooney-Rivlin material

(Mooney, 1940), the strain energy density function may be written as

W = C1(I1 − 3) + C2(I2 − 3) = C1[(I1 − 3) + α(I2 − 3)] (1.2)

in which, C1 and C2 are material constants, and α = C2/C1.
To simplify, the first of the Rivlin model can be used and it is a neo-Hookean material

(Treloar, 1976), which can be expressed as follows

W (I1) =
1

2
nkT (I1 − 3) (1.3)

A generalized neo-Hookean model widely used in the domain of biomechanics is a two-
-parameter exponential strain-energy named by Fung and Demiray (Fung, 1967)

W =
µ

2b
{exp[b(I1 − 3)]− 1} (1.4)

in which b is a positive dimensionless material parameter which can display the degree of strain-
-stiffening. In soft tissues, the value of b is in the range 1 ¬ b ¬ 5.5.
Another well-known model of this type is the three parameter Knowles power law model

(Knowles, 1977) as follows

W =
µ

2b

[(

1 +
b

n
(I1 − 3)

)n

− 1
]

(1.5)

Gent (1996) proposed a new strain energy function for the non-linear elastic behavior of
rubber-like materials. Because of its formal simplicity, this model has been widely applied to large
elastic deformations of solids. The energy density function proposed by Gent for incompressible,
isotropic, hyper elastic materials is shown as

W = −
µ

2
Jm ln

(

1−
I1 − 3

Jm

)

(1.6)

where µ is the shear modulus and Jm is the constant limiting value for I1−3. SinceW depends on
the only first invariant of B, the Gent model belongs to the class of the generalized neo-Hookean
materials.
Based on Gent’s constitutive model, a modified model by Gent has been proposed to describe

the mechanical property of an arterial wall in (Sang et al., 2014), whose modified strain energy
function is expressed as

W = −
µJm
2
ln
(

1−
In1 − 3

n

Jm

)

(1.7)

where n is the material parameter.
From constitutive model (1.7), we can see that it can be transformed to the Gent model when

n = 1. If n = 1 andJm → ∞, constitutive model (1.7) can be transformed to the neo-Hookean
model.
The developments of analysis of rubber tubes have continually been accompanied by discus-

sions. Zhu et al. (2008, 2010) analyzed the finite axisymmetric deformation of a thick-walled
circular cylindrical elastic tube subject to pressure on its external lateral boundaries and zero
displacement on its ends. Meanwhile, they considered bifurcation from a circular cylindrical
deformed configuration of a thick-walled circular cylindrical tube of an incompressible isotro-
pic elastic material subject to combined axial loading and external pressure. Research on the
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physical behavior of compressible nonlinear elastic materials for the problem of inflation of
a thin-walled pressurized torus was developed by Papargyri-Pegiou and Stavrakakis (2000).
Gent (2005) analyzed a inflating cylindrical rubber tube in terms of simple strain energy func-
tions using Rivlin’s theory of large elastic deformations. Mangan and Destrade (2015) used the
3-parameter Mooney and Gent-Gent (GG) phenomenological models to explain the stretch-strain
curve of typical inflation. Based on the strain energy function by Gent, a thorough discussion
(Feng et al., 2010; Hariharaputhiran and Saravanan, 2016; Horgan, 2015; Horgan and Sacco-
mandi, 2002; Pucci and Saccomandi, 2002; Rickaby and Scott, 2015) was given on molecular
models and their relation to deformation of rubber-like materials.

Akyüz and Ertepinar (1999) investigated cylindrical shells of arbitrary wall thickness sub-
jected to uniform radial tensile or compressive dead-load traction. By using the theory of small
deformations superposed on large elastic deformations, the stability of the finitely deformed
state and small, free, radial vibrations about this state are investigated. Akyüz and Ertepinar
(2001) also investigated the stability of homogeneous, isotropic, compressible, hyperelastic, thick
spherical shells subjected to external dead-load traction and gave the critical values of stress
and deformation for a foam rubber, slightly compressible rubber and a nearly incompressible
rubber. Alexander (1971), by using the non-linear analysis, predicted that the axial load had
a significant effect on the value of tensile instability pressure. With thin-walled tubes of latex
rubber, experiments were performed and the results were according with the results of the non-
linear analysis in stable regions where the membrane retained its cylindrical shape. Based on the
theory of large elastic deformations, Ertepinar (1977) investigated finite breathing motions of
multi-layered, long, circular cylindrical shells of arbitrary wall thickness. And a tube consisting
of two layers of neo-Hookean materials was solved both by exact and approximate methods,
which was observed as an excellent agreement between the two sets of results. Bifurcation of
inflated circular cylinders of elastic materials under axial loading was researched by Haughton
and Ogden (1979a,b), who proposed that bifurcation might occur before the inflating pressure
reached the maximum. A combination of the two mode interpreted in terms of bending for a
tube under axial compression was discussed in terms of the length to radius ratio of the tube. At
the same time, prismatic, axisymmetric and asymmetric bifurcations for axial tension and com-
pression combined with internal or external pressure was discussed and presented for a general
form of incompressible isotropic elastic strain energy function. Haughton and Ogden (1980) put
a research on the deformation of a circular cylindrical elastic tube of finite wall thickness rotating
about its axis, and achieved a range of values of the axial extension for which no bifurcation
could occur during rotation. Jiang and Ogden (2000) proposed the axial shear deformation of
a thick-walled right circular cylindrical tube of the compressible isotropic elastic material and
discussed explicit solutions for several forms of the strain-energy function. Jiang and Ogden
(2000) also analyzed the plane strain character of the finite azimuthal shear of a circular cy-
lindrical annulus of a compressible isotropic elastic material by utilizing the strain energy as
a function of two independent deformation invariants. Merodio and Ogden (2015) proposed a
new example of the solution to the finite deformation boundary-value problem for a residually
stressed elastic body and combined extension, inflation and torsion of a circular cylindrical tube
subject to radial and circumferential residual stresses.

Based on Gent’s constitutive model, a modified model has been proposed to describe incom-
pressible rubber-like materials. The inductive material parameter n can reflect the hardening
character of rubber-like materials. With the modified model, mechanical properties of rubber
tubes subjected to internal pressure has been revealed and large deformation analysis and sta-
bility analysis has been proposed by utilizing Gent’s modified strain energy function. Based on
the nonlinear elastic theory, by establishing the theoretical model of rubber tubes under internal
pressure, the relationship between the internal pressure and circumferential principal stretch has
been deduced. Meanwhile, stability analysis of rubber tube has also been proposed and the rela-
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tionship between the internal pressure and internal volume ratio has been achieved. The results
show that the constitutive parameter n has a major impact on mechanical properties of the
rubber tube, and when n ¬ 1, the rubber tube becomes softening. The instability phenomenon
in the rubber tube will appear only when n is less than 1.5. For different values of n, the range
of the value of Jm which leads to instability also changes.

2. Finite deformation analysis

Based on the elastic finite deformation theory, the left Cauchy–Green tensor can be denoted by
B = F ·FT, where F is the gradient of the deformation and λ1, λ2, λ3 are the principal stretches,
then, for an isotropic material, W is a function of the strain invariants as follows

I1 = trB = λ
2
1 + λ

2
2 + λ

2
3

I2 =
1

2
[( trB2 − tr (B2)] = λ21λ

2
2 + λ

2
2λ
2
3 + λ

2
3λ
2
1

I3 = detB = λ
2
1λ
2
2λ
2
3

(2.1)

By utilizing strain energy function (1.7), the Cauchy stress tensor can be expressed as

σ = −pI+
nµJm

Jm − (In1 − 3
n)
In−11 B (2.2)

in which I1 is the first invariant of and p is the undetermined scalar function that justifies the
incompressible internal constraint conditions.

Fig. 1. Rubber tube under pressure

Consider a cylindrical rubber tube under uniform pressure, which is illustrated in Fig. 1.
If (R,Θ,Z) and (r, θ, z) are the coordinates of the rubber tube before deformation and after
deformation respectively, then the deformation pattern of the rubber tube can be expressed as

r = f(R) θ = Θ z = λzZ (2.3)

The deformation gradient tensor F can be expressed as

F = FT =











dr

dR
0 0

0
r

R
0

0 0 λz











=







λr 0 0
0 λθ 0
0 0 λz






(2.4)

in which, λr, λθ and λz are the principal stretch in the radial, circumferential and axial direction
of the cylinder membrane. It can be expressed as

λr =
dr

dR
= (λλz)

−1 λθ =
r

R
= λ λz = λz (2.5)
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The left Cuachy-Green deformation tensor B can be shown as follows

B = FFT =







λ2r 0 0
0 λ2θ 0
0 0 λ2z






=







(λλz)
−2 0 0
0 λ2 0
0 0 λ2z






(2.6)

And the first invariants of the left Cuachy-Green deformation tensor B can be expressed as

I1 = trB = (λλz)
−2 + λ2 + λ2z (2.7)

Substituting (2.7) and (2.4) into (2.2), we get

σrr = −p+ 2(λλz)
−2 ∂W

∂I1
σθθ = −p+ 2λ

2∂W

∂I1
σzz = −p+ 2λ

2
z

∂W

∂I1
(2.8)

in which

∂W

∂I1
=
µ

2

nJm
Jm − (I

n
1 − 3

n)
In−11

and p is the Lagrange multiplier associated with hydrostatic pressure.
In the absence of body forces, the equilibrium equation of the axial symmetry in the current

configuration can be achieved as

dσrr
dr
+
1

r
(σrr − σθθ) = 0 (2.9)

For the cylinder rubber tube under internal pressure, it should be satisfied with that the radical
stress is zero outside of the rubber tube and the radical stress is equal to the internal pressure,
which can be expressed as

σrr(a) = −P σrr(b) = 0 (2.10)

From (2.9) and (2.10), we can get

0
∫

−P

dσrr =

b
∫

a

1

r
(σθθ − σrr) dr =

b
∫

a

1

r

µnJm
Jm − (I

n
1 − 3

n)
In−11 [λ

2 − (λλz)
−2] dr (2.11)

in which, a = f(A), b = f(B), a and b are the internal and external radii of the cylinder rubber
tube after deformation. A and B are the internal and external radii of the cylinder rubber tube
before deformation.
By utilizing the expression λ = r/R, we can arrive at the following expression

dr =
R

1− λ2λz
dλ (2.12)

Substituting (2.12) into (2.11), we get

P =

λb
∫

λa

1

λ

∂W

∂I1
[λ2 − (λλz)

−2]
1

1− λ2λz
dλ

=

λb
∫

λa

1

λ

µnJm
Jm − (In1 − 3

n)
In−11 [λ

2 − (λλz)
−2]

1

1− λ2λz
dλ

(2.13)

in which, λa = a/A, λb = b/B.
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Taking into account the incompressibility of rubber-like materials, the following equations
can be achieved

(r2 − a2)λz = R
2 −A2 R2(λ2λz − 1) = λza

2 −A2 (2.14)

Equation (2.14) can be transformed into

λ2aλz − 1 = (ε+ 1)
2(λ2bλz − 1) (2.15)

where ε = (B−A)/A. For a thin-walled cylinder rubber tube, wall thickness is far less than the
mean radius, so the value of ε is far less than 1. Removing the high-order term of ε, we can get

λ2aλz − 1 = λ
2
bλz − 1 + 2ε(λ

2
bλz − 1) (2.16)

By utilizing the expressions λa + λb = 2λ, λb = λ, Eq. (2.16) can be transformed into

λa − λb =
ε

λλz
(λ2λz − 1) (2.17)

From (2.17), a simplified equation from (2.13) can be expressed as

P =
µnJm

Jm − (I
n
1 − 3

n)
In−11 [λ

2 − (λλz)
−2]
ε

λ2λz
(2.18)

In order to discuss the effect of constitutive parameters Jm and n on the mechanical properties
of the rubber tube under pressure, non-dimensional stress is introduced. From Eq. (2.18), we
can get

P# =
nJm

Jm − (In1 − 3
n)
In−11 [λ

2 − (λλz)
−2]
1

λ2λz
(2.19)

where P# = P/(µε).
In order to study the effect on the rubber tube under pressure by the constitutive parameters

Jm and n, three circumstances are considered. Firstly, when Jm and λz is fixed, the distribution
between the internal pressure and circumferential principal stretch with the change of n has been
researched. Secondly, when n and λz is fixed, the distribution between the internal pressure and
circumferential principal stretch with the change of Jm has also been researched. Thirdly, we
simultaneously investigate the distribution between the internal pressure and circumferential
principal stretch with the change of λz when Jm and n is fixed.
Figures 2a-2c show distribution curves between the internal pressure P# and circumferential

principal stretch λ according to the above three circumstances.
As shown in Fig. 2a, for fixed material parameters Jm = 2.3 and λz = 1, when the material

parameter n increases, the circumferential principal stretch increases in accordance with the
internal pressure. It can also be seen in Fig. 2a that the effect of the constitutive parameter n has
a major impact on the mechanical properties of the rubber tube. When the material parameter n
takes higher values, the range of the circumferential principal stretch is larger, which means that
the rubber tube has strong inflation capability and good elasticity. On the other hand, when the
material parameter n takes a lesser value, the range of the circumferential principal stretch is
smaller, which means that the rubber inflation capability tube is weak. Especially when n ¬ 1,
the rubber tube starts softening and the material becomes unstable, which means the stability
analysis is necessary.
As can be noted in Fig. 2b, the material parameter Jm has also a certain influence on the

circumferential principal stretch of the rubber tube. As the value of Jm increases, the circumfe-
rential principal stretch increases in accordance with the internal pressure. When the material



Large deformation and stability analysis of a cylindrical rubber tube... 183

Fig. 2. Distribution curve between P# and λ with the effect of the material parameter:
(a) n (Jm = 2.3, λz = 1), (b) Jm (n = 1, λz = 1), (c) λz (n = 1, Jm = 2.3)

parameter Jm takes higher values, the range of the circumferential principal stretch is larger,
which means that the rubber tube has strong inflation capability and good elasticity. On the
other hand, when the material parameter Jm takes a lesser value, the range of the circumferential
principal stretch is smaller, which means that the inflation capability of the tube is weak.

Figure 2c displays the relation between the internal pressure and circumferential principal
stretch. From that we can see when the material parameters Jm and n are fixed, the circum-
ferential principal stretch decreases as the axial principal stretch increases, which means that
the rubber tube is incompressible. We also can infer that the axial principal stretch has a minor
impact on the mechanical properties of the rubber tube.

3. Stability analysis

According with the membrane hypothesis, σrr = 0. From (2.8), we can get

p =
µnJm

Jm − (In1 − 3
n)
In−11 (λλz)

−2 (3.1)

Substituting (3.1) into (2.8), we get

σθθ = 2
∂W

∂I1
[λ2 − (λλz)

−2] =
µnJm

Jm − (In1 − 3
n)
In−11 [λ

2 − (λλz)
−2]

σzz = 2
∂W

∂I1
[λ2z − (λλz)

−2] =
µnJm

Jm − (In1 − 3
n)
In−11 [λ

2
z − (λλz)

−2]

(3.2)
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For an incompressible rubber tube under pressure, when its two sides are closed, there is no
constraint along the length direction, from which the following expression can be achieved

σθθ =
Pr0
h

σzz =
Pr0
2h

(3.3)

where P is the internal pressure of the cylinder membrane, r0 is the mean radius after deforma-
tion and h is the thickness of the rubber membrane after deformation.
Considering the incompressibility of the rubber membrane, we can get

σθθ =
Pr0
h
=
Pλ2λzR0
H

σzz =
Pr0
2h
=
Pλ2λzR0
2H

(3.4)

in which, R0 is the mean radius before deformation and H is the thickness of the rubber mem-
brane before deformation.
From (3.2) and (3.4), the following equation can be formulated

Pλ2λzR0
H

=
µnJm

Jm − (I
n
1 − 3

n)
In−11 [λ

2 − (λλz)
−2]

P# =
1

λ2λz
[λ2 − (λλz)

−2]
nJm

Jm − (I
n
1 − 3

n)
In−11

(3.5)

where P# = PR0/H.
From (3.4), we get

σθθ = 2σzz (3.6)

Substituting (3.6) into (3.2), the following expression can be found

λ3z =
(λ2λz)

2 + 1

2λ2λz
(3.7)

Substituting (3.7) into (2.5), the principal stretch in the radial and axial direction of the cylinder
membrane can be expressed as

λ = ν
1

2

( 2ν

ν2 + 1

)

1

6

λz =
(ν2 + 1

2ν

)

1

3

(3.8)

where ν = λ2λz, which can reflect the volume expansion ratio, i.e., the ratio of the internal
volume of the cylinder membrane in the deformed state to that in the undeformed state.
Substituting (3.8) into (3.5)2, we get

P# =
ν2 − 1

ν2

( 2ν

ν2 + 1

)

1

3 nJm
Jm − (I

n
1 − 3

n)
In−11 (3.9)

In order to examine stability of the rubber cylinder membrane, the stationary point of P#

should be determined first.
When Jm → ∞, Eq. (1.7) can be transformed into the strain energy function proposed by

Gao (1990) as follows

W = A(In1 − 3
n) (3.10)

where A = µ/2.
Based on strain energy function (3.10), Eq. (3.9) can be transformed as

P#
∞
=
ν2 − 1

ν2

( 2ν

ν2 + 1

)

1

3

nIn−11 (3.11)

When the material parameter n = 1, the neo-Hookean constitutive equation can be achieved
from (3.10). Then, we get the following expression from (3.11)

P# =
ν2 − 1

ν2

( 2ν

ν2 + 1

)

1

3

(3.12)
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4. Discussion

As shown in Fig. 3, when Jm → ∞ and n = 1, we obtain the turning point ν
∗ = 2.930. For

the volume expansion ratio ν ¬ ν∗, the inflation curve is monotonically increasing. But for the
volume expansion ratio ν ­ ν∗, the inflation curve is decreasing.

Fig. 3. Distribution curve between P# and ν in the rubber tube inflation (Jm →∞ and n = 1)

Fig. 4. Distribution curve between P# and ν with the effect of: (a) n (Jm →∞), (b) Jm (n = 1),
(c) Jm (n = 0.5), (d)Jm (n = 0.1)

In order to discuss the effect of the material parameter n on the rubber tube inflation, the
distribution between the internal pressure and volume expansion ratio with the change of n has
been investigated when Jm →∞. Figure 4a displays the relation between the internal pressure
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and volume expansion ratio when n = 0.6, 1.0, 1.3, 1.5 and 1.6, respectively. We can see that the
inflation curve of the rubber tube has no limit point when n = 1.6, which means that there is
no instability in the rubber tube. Only if n ¬ 1.5, instability of the rubber tube under pressure
occurs.

As can be seen in Figs. 4b to 4d, the distribution between the internal pressure and volume
expansion ratio with the change of Jm when n = 1, n = 0.5 and n = 0.1, respectively. In Fig. 4b,
we can see when n = 1, the constitutive parameter Jm has obviously the effect on the stability of
the rubber tube. The inflating pressure is seen to pass through a maximum when Jm ­ 25, which
means that instability of the rubber tube under pressure will occur. The results are consistent
with the results by Gent (2005). It can be seen in Fig. 4c that the instability of the rubber tube
under pressure occurs when Jm ­ 2.3 with the material parameter n = 0.5. And we also can see
in Fig. 4d that the instability occurs when Jm ­ 0.5 with the material parameter n = 0.1.

5. Conclusion

A modified Gent’s strain energy function has been utilized to examine the large deformation
problem and the stability problem of the rubber tube subjected to internal pressure. By es-
tablishing the theoretical model of the rubber tube under internal pressure, the relationship
between internal pressure and circumferential principal stretch has been deduced with the chan-
ge of the constitutive parameters Jm and n, from which we can conclude that the constitutive
parameter n has a major impact on the mechanical properties of the rubber tube. When n ¬ 1,
the rubber tube becomes softening and the material becomes unstable, which means thst the
stability analysis is necessary. For a cylinder rubber tube closed at two sides, the relationship
between the internal pressure and internal volume ratio has also been deduced and the effect of
the two constitutive parameters n and Jm on the stability of the rubber tube has been invesiga-
ted. Accordingly, the instability phenomenon appears only when n is less than 1.5. For different
values of n, the range of the value of Jm leading to the instability also changes.
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