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A solution to the problem of synthesizing an initial three-dimensional kinematic chain with
spherical and rotary kinematic pairs is presented. It is shown that this chain can be used
as a structural module for structural-kinematic synthesis of motion of a three-dimensional
four-link generating lever mechanisms by preset positions of the input and output links.
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1. Introduction

Some papers demonstrate that four-link basic kinematic chains (BKC) may be used as a struc-
tural module with structural and kinematic synthesis of plain linkage mechanisms. Such an
approach to the synthesis of plain mechanisms allows reducing the problem of their structural
and kinematic synthesis to solution of the problem of BKC synthesis (Joldasbekov et al., 1987),
which is very useful for automation of mechanisms engineering. This paper testifies that a spe-
cified approach may be applied to the problem of structural and kinematic synthesis of spatial
linkage mechanisms (Kosbolov and Rakhmatulina, 2012b). The solution of the problem of syn-
thesis of spatial BKC of RSS type (R – rotational, S - spherical kinematic pairs) is represented,
and its use as a structural module with structural and kinematic synthesis of spatial linkage
mechanisms through predetermined positions of input and output links is shown (Kosbolov et
al., 2005). A method of solving the problem of BKC synthesis of RSS type is based on the intro-
duction of two movable bodies invariably associated with the input and output links (Kosbolov
and Rakhmatulina, 2013b).

2. On the existence of solution to the problem of initial kinematic chain

synthesis with spherical kinematic pairs

Problem statement: given N of finite distant positions of two solids Q1 and Q2

Q1(θ
1
i , ψ
1
i , φ
1
i ) Q2(XDi, YDi, ZDi, θ

2
i , ψ
2
i , φ
2
i ) i = 1, N (2.1)

where θji , ψ
j
i , φ
j
i are fixed axis Eulerian angles OXY Z and XDi, YDi, ZDi are coordinates of the

point Di of the solid Q2.
It is required to find such points in the fixed axis as A(XA, YA, ZA), of the solid Q1 and

C(xC , yC , zC) of the solid Q2, so that distance between the points B and C in all positions of
the solids Q1 and Q2 is little different from some constant value R (Fig. 1).
Problem solution: Let us introduce a weighted difference for the i-th position of the solids

in form

∆qi = |
−−→
BiCi|

2−R2 = (XCi −XBi)
2+(YCi −YBi)

2+(ZCi −ZBi)
2−R2 i =

−−→
1, N (2.2)
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Fig. 1. Equivalent four-link kinematic chain ABCD

where



XBi
YBi
ZBi
1


 =




XA
Ti10 YA

ZA
0 0 0 1







xB
yB
zB
1







XCi
YCi
ZCi
1


 =




XDi
Ti20 YDi

ZDi
0 0 0 1







xC
yC
zC
1




(2.3)
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It is a function of ten parameters: XA, YA, ZA, xB, yB, zB , R, xC , yC , zC . By grouping
these parameters in fours with the common parameter R, let us represent the weighted diffe-
rence in three different forms (McCarthy, 1995; Golynski, 1970; Innocenti, 1995; Kosbolov and
Rakhmatulina, 2012b, 2013b,c; Kosbolov et al., 2014)

∆(1)qi = (X̃Ai −XA)
2 + (ỸAi − YA)

2 + (Z̃Ai − ZA)
2 −R2

∆(2)qi = (x̃Bi − xB)
2 + (ỹBi − yB)

2 + (z̃Bi − ZB)
2 −R2

∆(3)qi = (x̃Ci − xC)
2 + (ỹCi − yC)

2 + (z̃Ci − ZC)
2 −R2

(2.6)
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where Tikj is the transfer matrix from the k coordinate system to the j system determined as

Ti01 = [T
i
10]
T Ti02 = [T

i
20]
T Ti21 = T

i
01 ×T

i
20 Ti12 = T

i
02 ×T

i
10 (2.8)

The necessary conditions for minimum of the sum of squares of the weighted difference

S =
N∑

i=1

[∆(k)qi ]
2 k = 1, 2, 3) (2.9)

may be written as the following system of equations
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From (2.10)1, considering (2.6)1 and (2.9), we obtain

N∑

i=1
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N∑

i=1

∆(1)qi (ỸAi − YA) = 0
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(2.11)

Assume that R 6= 0. Then from the last equality of system (2.11), it follows that

N∑

i=1

∆(1)qi = 0 (2.12)

With provision for (2.12), the system of equations (2.11) takes the form
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By substituting expressions for ∆
(1)
qi from (2.6)1 into system (2.13), we obtain
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System (2.14) is linear with respect to the variables XA, YA, ZA and H1 = (R
2−X2A−Y

2
A−

Z2A)/2, thus it may be written as
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ỸAi
N∑
i=1
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where R2Ai = X̃
2
Ai + Ỹ

2
Ai + Z̃

2
Ai.

The solution to this system by Cramer’s rule is as follows
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Similarly, from (2.10)2, considering (2.6)2 and (2.9), we obtain a system of linear equations in
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By solving this system by Cramer’s rule, we obtain

(xB , yB , zB ,H2) =
1
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From (2.10)3, considering (2.6)3 and (2.10)1, we obtain a system of linear equations in the
unknowns xC , yC , zC , H3
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N∑
i−1
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From which we obtain xC , yC , zC , H3

(xC , yC , zC ,H3) =
1

D3
(DxC ,DyC ,DzC ,DH3) D3 6= 0 (2.20)

Eliminating the first four unknowns XA, YA, ZA, R, based on formula (2.15), it is possible to
bring system (2.10) to a system of six equations with six unknowns xB, yB, zB , xC , yC , zC ,
which is convenient to be given as
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Apparently, equations of this system are the same as the three equations of the thirteen degree
in the three unknown functions given in the work by Kosbolov et al. (2005), though in this
case we have a system of six equations in six unknown functions. Solution of system (2.21) is
labor-intensive task, so it is more effective to apply a search algorithm for the minimum of the
function S stated below:

1. Give arbitrarily reference points B(0) ∈ Q1, C
(0) ∈ Q2.

2. Solve the system of linear equations (2.16) and determine X
(1)
A , Y

(1)
A , Z

(1)
A , R

(1)
1 .

3. Give points A(1) ∈ Q, C(0) ∈ Q2.

4. Solve the system of equations (2.18) and determine x
(1)
B , y

(1)
B , z

(1)
B , R

(1)
2 .

5. Give points A(1) ∈ Q, B(1) ∈ Q1.

6. Solve the system of equations (2.20) and determine x
(1)
C , y

(1)
C , z

(1)
C , R

(1)
3 .

7. Check |Xi+1A −X
i
A| ¬ ε, |Y

i+1
A − Y iA| ¬ ε, |Z

i+1
A − Z

i
A| ¬ ε, |R

i+1 −Ri| ¬ ε.

8. If this condition is satisfied, the iterating is completed.

9. If this condition is not satisfied, proceed to item 1 by replacing the reference points B(0)

and C(0) for the found points B(1) and C(0).

10. Then check the accuracy of the prescribed function reproduction by analysis of the position
RKC ABCD

rD0 = T10T21T32rD3
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11. The iterating is completed, if the accuracy of reproduction satisfies the prescribed function.
If it does not satisfy the prescribed accuracy, it is necessary to proceed to item 1 of the
given algorithm.

By applying the algorithm, we obtain a decreasing sequence of values of the objective function

S
(1)
1 , S

(1)
2 , S

(1)
3 , S

(2)
1 , S

(2)
2 , S

(2)
3 which has a limit equal to the value of the function S at the

point of local minimum. When satisfying the inequality

max
(
|R(i) −R(i−1)|, |X

(i)
A −X

(i−1)
A |, |Y

(i)
A − Y

(i−1)
A |, |Z

(i)
A − Z

(i−1)
A |

)
¬ ε

where ε is the prescribed calculation accuracy, the iterating is completed. Convergence of the
suggested algorithm is proved by the Weierstrass theorem.

Weierstrass theorem: For each function f(x) continuous over [a, b] and any real number
ε > 0, such a polynomial p(x) may be found that ‖P (x)− f(x)‖ < ε.

As a result of the problem solution, the points A(XA, YA, ZA) are determined in the fixed
system of coordinates, B(0) ∈ Q1, C

(0) ∈ Q2, such that when coinciding the link BC with them,
we obtain the desired RKC in form of an open four-link chain ABCD.

Then we check the accuracy of the prescribed function reproduction by analysis of the po-
sition of RKC ABCD. If the accuracy of reproduction satisfies the prescribed function, the
iteration is completed, and if it does not satisfy the prescribed accuracy, it is necessary to
proceed to item 1 of the prescribed algorithm.

When specifying a part of the desired synthesis parameters in various combinations, we
obtain different modifications of RKC (Kosbolov and Rakhmatulina, 2013b).

• If the coordinates of point A(XAi , YAi , ZAi) and Eulerian angles θ
1
i , ψ

1
i , φ

1
i of the solid Q1

as well as the axes of point Di(XDi , YDi , ZDi) and Eulerian angles θ
1
i , ψ

1
i , φ
1
i of the solid Q2

are specified, we obtain a three-link open chain ABCD (Fig. 1). The necessary conditions
for the minimum of the sum S in this case takes the form

∂S

∂j
= 0 j = xB , yB , zB , R, xC , yC , zC (2.22)

and to find the minimum S, we may use the algorithm given above, considering that the
parameters XA, YA, ZA are specified.

If the points A(XA, YA, ZA) and D(XD, YD, ZD) are fixed, then, as a result of the synthesis
of RKC, we obtain a spatial four-link chain ABCD.

• Given the coordinates xC = yC = zC = 0 of the point C ∈ Q2, coordinates XDi, YDi,
ZDi of the point D of the solid Q2 and Eulerian angles θ

1
i , ψ

1
i , φ

1
i of the solid Q1, and the

desired parameters XA, YA, ZA, R, xB , yB , zB .

The necessary conditions for the minimum of the sum S takes the form

∂S

∂j
= 0 j = XA, YA, ZA, R, xB , yB, zB (2.23)

To find the minimum of the function S we may use again the algorithm given above,
considering that xC = yC = zC = 0.

• Given coordinates xB, yB , zB = 0 of the point B of the solid Q1 and Eulerian angles of the
solid Q2, θ

2
i , ψ

2
i , φ

2
i . The original problem reduces to the definition of sphere of positions

of the fixed point C of the solid Q2 which is the least remote from N (Fig. 1).



Kinematic synthesis of spatial linkages with spherical pairs 81

The necessary conditions for the minimum of the sum S is

∂S

∂j
= 0 j = XA, YA, ZA, R, xC , yC , zC (2.24)

This problem was studied in detail in work by Kosbolov et al. (2013c). For its solution we
may also use the algorithm given above, assuming xB , yB, zB = 0, but in this special case,
the algorithm of the minimum search is absolutely coinciding with the kinematic inversion
method.

Thus, as we see, the problem of RKC with spherical kinematic pairs is solved, and their
modifications may be used as modules of structural and kinematic synthesis of spatial linkage
mechanisms through specified positions of the input and output links.

3. Example

Suppose that it is necessary to design a six-linkage mechanism with spherical pairs (Fig. 2),
approximately reproducing seven body positions specified in Table 1 and the initial data in
Table 2.

Fig. 2. Kinematic diagram of spatial linkage mechanisms with spherical pairs

Table 1. Assigned positions of the body for synthesis of a single movable mechanism – six-linkage
mechanism with N = 7

Position
XOi YOi ZOi

Euler angles [deg]
No. (i) θ1i ψ1i φ1i
1 0.30 0.12 0.01 0 0 0

2 0.35 0.17 0.24 28 35 17

3 0.44 0.21 0.25 34 38 5

4 0.51 0.15 0.32 17 24 12

5 0.50 0.30 0.45 50 50 21

6 0.60 0.25 0.41 45 33 24

7 0.55 0.32 0.35 0 0 0

When N = 7, as known in mobile spatial systems, there are points (not more than 20)
with seven positions on one sphere. Furthermore, the points which are in the seven considered
positions are approaching the sphere. As noted, the exact spherical points of a movable system
correspond to an absolute minimum S = 0 of the sum S =

∑
∆2qi , because they make all ∆qi
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Table 2. Initial data (N = 7)

N = 7
ZLL = 6, ZKK = 6, MJ0 = −1.2, NJ0 = −1.2,
ZII = 6, dmj = 0.2 KJ0 = −1.2

XS = 0.3 YS = 0.12 ZS = 0.01 F = 0 P = 0 T = 0

XS = 0.35 YS = 0.17 ZS = 0.24 F = 28 P = 35 T =17

XS = 0.44 YS = 0.21 ZS = 0.25 F = 34 P = 38 T = 5

XS = 0.51 YS = 0.15 ZS = 0.32 F = 17 P = 24 T = 12

XS = 0.5 YS = 0.3 ZS = 0.45 F = 50 P = 50 T = 21

XS = 0.6 YS = 0.25 ZS = 0.41 F = 45 P = 33 T = 24

XS = 0.55 YS = 0.32 ZS = 0.35 F = 0 P = 0 T = 0

Table 3. Results of calculation (N = 4)

LL = 3, KK = 2, II = 1 MJ = −0.6, NJ = −0.8, KJ = −1

N = 1 A = 0.488270 C = −2.22103

N = 2 A = 0.303894 C = 3.96393

N = 3 A = 0.151985 C = −3.85753

N = 4 A = 0.146845 C = 3.00599

R0 = 0.245293 R01 = 0.245194 S = 4.296551E-0.3 S1 = 4.295576E-0.3

LL = 3, KK = 2, II = 2 MJ = −0.6, NJ = −0.8, KJ = −0.8

N = 1 A = 0.488270 C = −3.42355

N = 2 A = 0.303894 C = 2.28575

N = 3 A = 0.151985 C = −2.95424

N = 4 A = 0.146845 C = 3.00600

R0 = 0.245216 R01 = 0.245194 S = 4.292136E-0.3 S1 = 4.295576E-0.3

LL = 3, KK = 2, II = 3 MJ = −0.6, NJ = −0.8, KJ = −0.6

N = 1 A = 0.488174 C = −3.18222

N = 2 A = 0.303906 C = 5.18244

N = 3 A = 0.152115 C = −2.55608

N = 4 A = −0.146845 C = 0.3006

R0 = 0.245195 R01 = 0.245194 S = 4.294402E-0.3 S1 = 4.295576E-0.3

LL = 3, KK = 2, II = 4 MJ = −0.6, NJ = −0.8, KJ = −0.6

N = 1 A = 0.488217 C = −2.74528

N = 2 A = 0.303942 C = 8.77332

N = 3 A = 0.152078 C = −2.92302

N = 4 A = 0.146866 C = 3.00599

R0 = 0.245217 R01 = 0.245194 S = 4.297097E-0.3 S1 = 4.295576E-0.3

(i = 1, 2, . . . , 7) vanish. The approximate spherical points of a movable system correspond to
the local minima of the sum or are located in the vicinity of the local minimum of the function
S = F (xC , yC , zC). Both these and other are common points of the surfaces Gx = 0, Gy = 0,
Gz = 0, and they are determined based on the solution to system (2.21).

We are definitely interested not in all system solutions (2.24), but in those which correspond
to the minimum of the sum S. These solutions in this case are a numerical method for searching of
the minimum of the sum S, based on the searching algorithm for the minima of the function S.
Since we need five spherical points of the movable system for construction of the six-linkage
mechanism (Fig. 2) having analysed the results we selected five points of the minimum of the
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surface S = F (xC , yC , zC). The coordinates of these points, the parameters of approaching
spheres corresponding to them and the values ∆qi maximum per module are given in Table 3.

4. Research results

Judging from deviations, the points C1, C2, C3 are the exact spherical points (found with the
given measure of inaccuracy), and C4 and C5 – are approximate points.

To solve this problem, a Visual Basic program has been written. The results of the problem
solution are given in Table 3.

The calculations have been made within the range

−1.2 < MJ < 0.6 − 1.2 < NJ < 0.6 − 1.2 < KJ < 0.6

with a pitch dmj = 0.2.

In the entire range of calculations, the process of calculation is concurrent. The global mini-
mum is equal to

Smin = 0.0042921

and it is achieved at

LL = 3 KK = 2 II = 2

In Table 3, only a part of results in the neighborhood of the global minimum is shown. Its value
is highlighted in bold frame in Table 3.

Below, the results of calculation of the objective function in form of carpet plots and 3D
plots (Figs. 3 and 4) are given.

Fig. 3. LL = 1,2,3, Smin = −0.0042921, volume graphics
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Fig. 4. LL = 4.5,6, Smin = −0.0042921, volume graphics

5. Discussion

As can be concluded, the use of one and the same objective function being generated for synthesis
of BKC and its modification allows automating of the process of synthesis of spatial linkage
mechanisms through predetermined positions of the input and output links of the mechanism.

6. Conclusions

In summary, in the synthesis of BKC with spherical kinematic pairs through predetermined
positions of the input and output links of a mechanism when two adjacent links of BKC tend to
infinity, it is necessary to replace the spherical kinematic pair for a plain or cylindrical one. In
such a case, the synthesized mechanism takes form of a spatial link mechanism after determining
the required parameters.
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