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Özge Özdemir

Istanbul Technical University, Faculty of Aeronautics and Astronautics, Maslak, Istanbul, Turkey

e-mail: ozdemirozg@itu.edu.tr

In this study, free vibration characteristics of a functionally graded Timoshenko beam that
undergoes flapwise bending vibration is analysed. The energy expressions are derived by
introducing several explanotary figures and tables. Applying Hamilton’s principle to the
energy expressions, governing differential equations of motion and boundary conditions are
obtained. In the solution part, the equations of motion, including the parameters for rotary
inertia, shear deformation, power law index parameter and slenderness ratio are solved
using an efficient mathematical technique, called the differential transform method (DTM).
Natural frequencies are calculated and effects of several parameters are investigated.
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1. Introduction

The concept of Functionally Graded Materials (FGMs) was originated from a group of material
scientists in Japan as means of preparing thermal barrier materials (Loy et al., 1999). FGMs are
special composites that have continuous variation of material properties in one or more directions
to provide designers with the ability to distribute strength and stiffness in a desired manner to
get suitable structures for specific purposes in engineering and scientific fields such as design of
aircraft and space vehicle structures, electronic and biomedical installations, automobile sector,
defence industries, nuclear reactors, electronics, transportation sector, etc. As a consequence,
it is important to understand static and dynamic behavior of FGMs, so it has been an area of
intense research in the recent years. Especially, functionally graded beam (FGB) structures have
become a fertile area of research since beam structures have been widely used in aeronautical,
astronautical, civil, mechanical and other kinds of installations. Several research papers provide
a good introduction and further references on the subject (Alshorbagy et al., 2011; Chakraborty
et al., 2003; Giunta et al., 2011; Huang and Li, 2010; Kapuria et al., 2008; Lai et al., 2012; Li,
2008; Loja et al., 2012; Lu and Chen, 2005; Thai and Vo, 2012; Wattanasakulpong et al., 2012;
Zhong and Yu, 2007).

Due to the increasing application trend of FGMs, several beam theories have been developed
to examine the response of FGBs. The Classical Beam Theory (CBT), i.e. Euler Bernoulli
Beam Theory, is the simplest theory that can be applied to slender FGBs. The first order shear
deformation theory (FSDT), i.e. Timoshenko Beam Theory, is used for the case of either short
beams or high frequency applications to overcome the limitations of the CBT by accounting
for the tranverse shear deformation effect. Bhimaraddi and Chandrashekhara (1991) derived
laminated composite beam equations of motion using the first-order shear deformation plate
theory (FSDPT). Dadfarnia (1997) developed a new beam theory for laminated composite beams
using the assumption that the lateral stresses and all derivatives with respect to the lateral
coordinate in the plate equations of motion are ignored.
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In this study, which is an extension of the author’s previous works (Kaya and Ozdemir
Ozgumus, 2007; Kaya and Ozdemir Ozgumus, 2010; Ozdemir Ozgumus and Kaya, 2013), free
vibration analysis of a functionally graded Timoshenko beam that undergoes flapwise bending
vibrations is performed. At the beginning of the study, expressions for both kinetic and potential
energies are derived in a detailed way by using explanatory tables and figures. In the next
step, governing differential equations of motion are obtained applying Hamilton’s principle. In
the solution part, the equations of motion, including the parameters for rotary inertia, shear
deformation, power law index parameter and slenderness ratio are solved using an efficient
mathematical technique, called the differential transform method (DTM). Natural frequencies
are calculated and effects of the parameters, mentioned above, are investigated. The calculated
results are compared with the ones in open literature. Consequently, it is observed that there is
a good agreement between the results which proves the correctness and accuracy of the DTM.

2. Beam model

The governing differential equations of motion are derived for the free vibration analysis of a
functionally graded Timoshenko beam model with a right-handed Cartesian coordinate system
which is represented by Fig. 1.

Fig. 1. Functionally graded beam model and the coordinate system

Here a uniform, functionally graded Timoshenko beam of length L, height h and width b
which has the cantilever boundary condition at point O is shown. The xyz-axes constitute a
global orthogonal coordinate system with the origin at the root of the beam. The x-axis coincides
with the neutral axis of the beam in the undeflected position, the y-axis lies in the width direction
and the z-axis lies in the depth direction.

3. Formulation

3.1. Functionally graded beam formulation

Material properties of the beam, i.e. modulus of elasticity E, shear modulus G, Poisson’s
ratio ν and material density ρ are assumed to vary continuously in the thickness direction z as
a function of the volume fraction, and the properties of the constituent materials according to
a simple power law.
According to the rule of mixture, the effective material property P (z) can be expressed as

follows

P (z) = PtVt + PbVb (3.1)

where Pt and Pb are the material properties at the top and bottom surfaces of the beam while
Vt and Vb are the corresponding volume fractions. The relation between the volume fractions is
given by

Vt + Vb = 1 (3.2)
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The volume fraction of the top constituent of the beam Vt is assumed to be given by

Vt =
( z
h
+
1

2

)k
k ­ 0 (3.3)

where k is a non-negative power law index parameter that dictates the material variation profile
through the beam thickness.
Considering Eqs. (3.1)-(3.3), the effective material property can be rewritten as follows

P (z) = (Pt − Pb)
( z
h
+
1

2

)k
+ Pb (3.4)

It is evident from Eq.(4) that when z = h/2, E = Et, ν = νt, G = Gt, ρ = ρt and when
z = −h/2, E = Eb, ν = νb, G = Gb and ρ = ρb.

3.2. Displacement field and strain field

The cross-sectional and the longitudinal views of a Timoshenko beam that undergoes exten-
sion and flapwise bending deflections are given in Figs. 2a and 2b, respectively. Here, the reference
point is chosen, and is represented by P0 before deformation and by P after deformation.

Fig. 2. (a) Cross-sectional view, (b) longitudinal view of the Timoshenko beam

Here, η is the offset of the reference point from the z-axis, ξ is the offset of the reference
point from the middle plane, x is the offset of the reference point from the z-axis, u0 is the
elongation, w is the flapwise bending displacement, ϕ is the rotation due to bending and γ is
the shear angle.
Considering Figs. 2a and 2b, the coordinates of the reference point are obtained as follows:

— before deflection (coordinates of P0)

x0 = x y0 = η z0 = ξ (3.5)

— after deflection (coordinates of P )

x1 = x+ u0 + ξϕ y1 = η z1 = w + ξ (3.6)

The position vectors of the reference point are represented by r0 and r1 before and after deflec-
tion, respectively. Therefore, dr0 and dr1 can be written as follows

dr0 = dxi+ dηj+ dξk

dr1 = [(1 + u
′

0 + ξϕ
′)]dxi+ dηj+ (w′dx+ dξ)k

(3.7)

where (·)′ denotes differentiation with respect to the spanwise coordinate x.
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The classical strain tensor εij may be obtained by using the following equilibrium equation
given by Eringen (1980)

dr1 · dr1 − dr0 · dr0 = 2[dx dη dξ][εij ]



dx
dη
dξ


 (3.8)

where

[εij ] =



εxx εxη εxξ
εηx εηη εηξ
εξx εξη εξξ


 (3.9)

Substituting Eqs. (3.7) into Eq. (3.8), the components of the strain tensor εij are obtained as
follows

εxx = u
′

0 +
(u′0)

2

2
+
(w′)2

2
+ u′0ϕ

′ξ + ϕ′ξ +
(ϕ′)2

2
ξ2

γxη = 0 γxξ = (w
′ + ϕ) + ϕϕ′ξ − u′0ϕ

(3.10)

where εxx, γxη and γxξ are the axial strain and the shear strains, respectively.

In this work, only εxx, γxη and γxξ are used in the calculations because, as noted by Hodges
and Dowell (1974) for long slender beams, the axial strain εxx is dominant over the transverse
normal strains εηη and εξξ. Moreover, the shear strain γηξ is by two orders smaller than the
other shear strains γxξ and γxη. Therefore, εηη , εξξ and γηξ are neglected.

In order to obtain simpler expressions for the strain components given by Eqs. (3.10), higher
order terms can be neglected, so an order of magnitude analysis is performed by using the
ordering scheme taken from Hodges and Dowell (1974) and introduced in Table 1.

Table 1. Ordering scheme for the Timoshenko beam model

Term Order

w′ O(ε)

ϕ O(ε)

w′ + ϕ O(ε2)

u′0 O(ε2)

ϕ′ (ε2)

Hodges and Dowell (1974) used the formulation for an Euler-Bernoulli beam, so in this study
their formulation is modified for the Timoshenko beam, and a new expression w′ + ϕ = O(ε2)
is added to their ordering scheme as a contribution to literature.

Considering Table 1, Eqs. (3.10) are simplified as follows

εxx = u
′

0 +
(u′0)

2

2
+
(w′)2

2
+ ϕ′ξ γxη = 0 γxξ = w

′ + ϕ (3.11)

3.3. Potential energy

The expression for potential energy is given by

U =
1

2

l∫

0

∫

A

(σxxεxx + τxξγxξ) dAdx =
b

2

l∫

0

h/2∫

−h/2

(σxxεxx + τxξγxξ) dξ dx (3.12)
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The axial force N , the bending moment M and the shear force Q that act on a laminate at the
midplane are expressed as follows (Kollar and Springer, 2003)

N = b

h/2∫

−h/2

σ dz M = b

h/2∫

−h/2

zσ dz Q = b

h/2∫

−h/2

τ dz (3.13)

Substituting Eqs. (3.11) into Eq. (3.12) and considering Eqs. (3.13), the following expression is
obtained

U =
1

2

l∫

0

{
Nx
[
u′0 +

(w′)2

2

]
+Mxϕ

′ +Qz(w′ + ϕ)
}
dx (3.14)

where

Nx = A11u
′

0 +B11ϕ
′ Mx = B11u

′

0 +D11ϕ
′ Q = A55γxξ (3.15)

Here, the stiffness coefficients are obtained as follows

[A11 B11 D11] =

∫

A

E(z)[1 z z2] dA A55 = K

∫

A

G(z) dA (3.16)

where K is defined as the shear correction factor that takes the value of K = 5/6 for rectangular
cross sections.
Substituting Eqs. (3.15) into Eq. (3.14) gives

U =
1

2

l∫

0

[A11(u
′

0)
2 + 2B11u

′

0ϕ
′ +D11(ϕ

′)2 +A55(w
′ + ϕ)] dx (3.17)

Referring Eq. (3.17), variation of the potential energy is obtained as follows

δU =

l∫

0

[(A11u
′

0 +B11ϕ
′)δu′0 + (B11u

′

0 +D11ϕ
′)δϕ′ +A55(w

′ + ϕ)(δw′ + δϕ)] dx (3.18)

3.4. Kinetic energy

The position vector of the point P shown in Fig. 2 is given by

r = (x+ u0 + ξϕ)i+ wk (3.19)

Considering Eq. (3.19), the velocity vector of this point is obtained as follows

V =
∂r

∂t
= (u̇0 + ξϕ̇)i+ ẇk (3.20)

Hence, the velocity components are

Vx = u̇0 + ξϕ̇ Vy = 0 Vz = ẇ (3.21)

The kinetic energy expression is given by

T =
1

2

l∫

0

∫

A

ρ(z)(V 2x + V
2
y + V

2
z ) dAdx =

b

2

l∫

0

h/2∫

−h/2

ρ(z)(V 2x + V
2
y + V

2
z ) dξ dx (3.22)

where ρ(z) is the effective material density.
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Substituting the velocity components into Eq. (3.22) and taking the variaiton of kinetic
energy gives

δT =

l∫

0

[I1(u̇0δu̇0 + ẇδẇ) + I2(u̇0δϕ̇+ ϕ̇δu̇0) + I3ϕ̇δϕ̇] dx (3.23)

where I1, I2 and I3 are the inertial characteristics of the beam given by

[I1 I2 I3] =

∫

A

ρ(z)[1 z z2] dA (3.24)

3.5. Equations of motion and the boundary conditions

Hamilton’s principle is expressed as follows

t2∫

t1

δ(U − T ) dt = 0 (3.25)

Substituting Eqs. (3.18) (3.23) into Eq. (3.25) gives the equations of motion and the boundary
conditions as follows:

— equations of motion

A11u
′′

0 +B11ϕ
′′ = I1ü0 + I2ϕ̈ A55(w

′′ + ϕ̇′) = I1ẅ

D11ϕ
′′ +B11u

′′

0 −A55(w
′ + ϕ) = I2ü0 + I3ϕ̈

(3.26)

— boundary conditions

x = 0 u0(0, t) = w(0, t) = ϕ(0, t) = 0

x = L A11u
′

0(L, t) +B11ϕ
′(L, t) = 0 A55[w

′(L, t) + ϕ(L, t)] = 0

D11ϕ(L, t) +B11u
′

0(L, t)−A55(w
′ + ϕ) = 0

(3.27)

In order to investigate free vibration of the beam model considered in this study, a sinusoidal
variation of u0, w and ϕ with a circular natural frequency ω is assumed, and the functions are
approximated as

u0(x, t) = u(x)e
iωt w(x, t) = w(x)eiωt ϕ(x, t) = ϕ(x)eiωt (3.28)

Substituting Eqs. (3.28) into the equations of motion, i.e. Eqs. (3.26), and into the boundary
conditions, i.e. Eqs.(3.27), the following dimensionless equations are obtained as follows:

— equations of motion

γ2ũ∗∗ + α2ϕ̃∗∗ + λ2(ũ+ µ2ϕ̃) = 0
w̃∗∗ + ϕ̃

τ2
+ λ2w̃ = 0

τ2(α2ũ∗∗ + ϕ̃∗∗ + µ2λ2ũ) + (r2τ2λ2 − 1)ϕ̃− w̃∗ = 0
(3.29)

— boundary conditions

x = 0 ũ(0, t) = w̃(0, t) = ϕ̃(0, t) = 0

x = L γ2ũ∗ + α2ϕ̃∗(L, t) = 0
1

τ2
[w̃∗(L, t) + ϕ̃(L, t)] = 0

α2ũ∗(L, t) + ϕ̃∗(L, t) = 0

(3.30)
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Here, the dimensionless parameters are defined as

w̃ =
w

L
ũ =
u

L
ϕ̃ = ϕ γ2 =

A11L
2

D11
τ2 =

D11

A55L2

λ2 =
I1L
4ω2

D11
µ2 =

I2
I1L

r2 =
I3
I1L2

α2 =
B11L

D11
(3.31)

4. Differential Transform Method

The Differential Transform Method (DTM) is a transformation technique based on the Taylor
series expansion and is a useful tool to obtain analytical solutions of differential equations. In
this method, certain transformation rules are applied, and the governing differential equations
and the boundary conditions of the system are transformed into a set of algebraic equations in
terms of the differential transforms of the original functions, and the solution of these algebraic
equations gives the desired solution of the problem.
Consider a function f(x) which is analytical in a domain D and let x = x0 represent any

point in D. The function f(x) is then represented by a power series whose center is located at x0.
The differential transform of the function f(x) is given by

F [k] =
1

k!

(dkf(x)
dxk

)

x=x0
(4.1)

where f(x) is the original function and F [k] is the transformed function. The inverse transfor-
mation is defined as

f(x) =
∞∑

k=0

(x− x0)
kF [k] (4.2)

Combining Eq. (4.1) and Eq. (4.2), we get

f(x) =
∞∑

k=0

(x− x0)
k

k!

(dkf(x)
dxk

)

x=x0
(4.3)

Considering Eq. (4.3), it is noticed that the concept of differential transform is derived from the
Taylor series expansion. However, the method does not evaluate the derivatives symbolically.
In actual applications, the function f(x) is expressed by a finite series and Eq. (4.3) can be

written as follows

f(x) =
m∑

k=0

(x− x0)
k

k!

(dkf(x)
dxk

)

x=x0
(4.4)

which means that the rest of the series

f(x) =
∞∑

k=m+1

(x− x0)
k

k!

(dkf(x)
dxk

)

x=x0
(4.5)

is negligibly small. Here, the value of m depends on the convergence of natural frequencies.
Theorems that are frequently used in the transformation procedure are introduced in Table 2,

and theorems that are used for boundary conditions are introduced in Table 3.
After applying DTM to Eqs. (3.29) and (3.30), the transformed equations of motion and

boundary conditions are obtained as follows:
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Table 2. DTM theorems used for equations of motion

Original function Transformed function

f(x) = g(x)± h(x) F [k] = G[k]±H[k]

f(x) = λg(x) F [k] = λG[k]

f(x) = g(x)h(x) F [k] =
∑k
l=0G[k − l]H[l]

f(x) = d
ng(x)
dxn F [k] = (k+n)!k! G[k + n]

f(x) = xn F [k] = δ(k − n) =

{
0 if k 6= n
1 if k = n

Table 3. DTM theorems used for boundary conditions

x = 0 x = 1

Original B.C. Transformed B.C. Original B.C. Transformed B.C.

df(0)
dx = 0 F (0) = 0 f(1) = 0

∑
∞

k=0 F (k) = 0

df
dx(0) = 0 F (1) = 0 df

dx(1) = 0
∑
∞

k=0 kF (k) = 0

d2f
dx2 (0) = 0 F (2) = 0 d2f

dx2 (1) = 0
∑
∞

k=0 k(k − 1)F (k) = 0

d3f
dx3 (0) = 0 F (3) = 0 d3f

dx3 (1) = 0
∑
∞

k=0(k − 1)(k − 2)kF (k) = 0

— equations of motion

γ2(k + 1)(k + 2)U [k + 2] + α2(k + 1)(k + 2)ϕ[k + 2] + λ2(U [k] + µ2ϕ[k]) = 0

1

τ2
(k + 1)(k + 2)W [k + 2] + λ2W [k] +

1

τ2
(k + 1)ϕ[k + 1] = 0

α2(k + 1)(k + 2)U [k + 2] + (k + 1)(k + 2)ϕ[k + 2] + λ2µ2U [k] +
(
r2λ2 −

1

τ2

)
ϕ[k]

−
1

τ2
(k + 1)W [k + 1] = 0

(4.6)

— boundary conditions

x = 0 U [k] =W [k] = ϕ[k] = 0

x = L γ2
∞∑

k=0

kU [k] + α2
∞∑

k=0

kϕ[k] = 0
1

τ2

(
∞∑

k=0

(kW [k] + ϕ[k])

)
= 0

α2
∞∑

k=0

kU [k] +
∞∑

k=0

kϕ[k] = 0

(4.7)

5. Results and discussions

In the numerical analysis, two cases are studied. In the first case, natural frequencies of a pure
aluminum Timoshenko beam with simply-simply supported (SS) end conditions and, in the
second case, a fuctionally graded Timoshenko beam with clamped free (CF) boundary conditions
are calculated. Effects of the slenderness ratio L/h and the power law index parameter k on the
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natural frequencies are investigated. The results are presented in related tables. In order to
validate the calculated results, comparisons with the studies in open literature are made and a
very good agreement between the results is observed, which proves the correctness and accuracy
of the Differential Transform Method. It is believed that the tabulated results can be used as
references by other researchers to validate their results.

Case 1. Pure aluminum simply supported beam

Table 4. Material properties of the aluminum Timoshenko beam

Property Aluminum (Al)

Elasticity modulus E 70GPa

Material density ρ 2700 kg/m3

Poisson’s ratio ν 0.23

Variation of the first five natural frequencies of the S-S pure aluminum Timoshenko beam
with respect to the slenderness ratio L/h is given in Table 5. When the calculated results are
compared with the ones given by Sina et al. (2009), a very good agreement between the results
is observed.

Table 5. Dimensionless natural frequencies of the pure aluminum Timoshenko beam

Frequency Slenderness ratio L/h

λ = ωL
2

h

√
ρm
Em

10 20 30 40 50 100

Fundamental 2.87896 2.91515 2.92204 2.92447 2.92559 2.92709

Sina et al. (2009) 2.879 – 2.922 – – 2.927

2nd NF 10.9963 11.5159 11.6224 11.6606 11.6784 11.7024

3rd NF 23.1528 25.3995 25.9107 26.0988 26.1876 26.3078

4th NF 32.2814 43.9854 45.4901 46.0634 46.3380 46.7137

5th NF 38.0919 64.5627 69.9845 71.3222 71.9741 72.8788

Case 2. FG Timoshenko beam

The FG beam is made of aluminum (Al) at the top and alumina (Al2O3) at the bottom.
The effective beam properties change through the beam thickness according to the power law.
The material properties of the FG beam are displayed in Table 6.

Table 6. Material properties of the FG beam

Property Aluminum (Al) Alumina (Al2O3)

Elasticity modulus E 70GPa 380GPa

Material density ρ 2702 kg/m3 3960 kg/m3

Poisson’s ratio ν 0.3 0.3

Variation of the fundamental natural frequency of the C-F functionally graded Timoshenko
beam according to the power law exponent for L/h = 20 is given in Table 7. When the calculated
results are compared with the ones given by Şimsek (2010), a very good agreement between the
results is observed.



1214 Ö. Özdemir

Table 7. Dimensionless fundamental frequencies of the C-F FG Timoshenko beam

Frequency Power law exponent k

λ = ωL
2

h

√
ρm
Em

0 0.2 0.5 1 2 5 10 Full metal

Fundamental 1.94955 1.81407 1.66026 1.50103 1.36966 1.30373 1.26493 1.01297

Şimsek (2010) 1.94957 1.81456 1.66044 1.50104 1.36968 1.30375 1.26495 1.01297

In Table 8, variation of the dimensionless natural frequencies of the C-F functionally graded
Timoshenko beam with respect to the power law exponent k and the slenderness ratio L/h is
presented.

Table 8. Variation of the dimensionless natural frequencies of the C-F functionally graded
Timoshenko beam with respect to the power law exponent k and the slenderness ratio L/h

k

L/h 0 0.2 0.5 1 2 5 10 Full metal

3 1.80329 1.6829 1.54468 1.39885 1.27348 1.19956 1.15684 0.936972
8.21514 7.72196 7.12189 6.44425 5.77913 5.22620 4.96530 4.26852
9.06941 8.675 8.23136 7.7081 7.05971 6.19459 5.64279 4.71239
17.9802 16.9703 15.7499 14.3438 12.9094 11.6647 11.0314 9.34237
26.4033 25.1248 23.5417 21.6204 19.4397 17.1022 15.8590 –

4 1.86385 1.73735 1.59278 1.44141 1.31344 1.24242 1.20111 0.96844
9.42868 8.8443 8.15412 7.39468 6.68493 6.15895 5.8858 4.89906
12.0925 11.5548 10.931 10.1889 9.27327 8.07187 7.35535 6.28319
21.5877 20.3297 18.8307 17.1413 15.4804 14.1093 13.3796 11.2168
34.5928 32.7263 30.451 27.8043 25.0665 22.6209 21.4285 18.0754

5 1.89441 1.76476 1.61692 1.46276 1.33353 1.26419 1.2237 0.98432
10.2025 9.55154 8.79239 7.97167 7.23018 6.72424 6.44766 5.30114
15.1157 14.4404 13.6505 12.7061 11.5406 10.0258 9.14605 7.85398
24.2839 22.8225 21.0981 19.1875 17.3683 15.9509 15.1753 12.6177
40.3144 38.0031 35.2454 32.1226 29.0171 26.3775 24.9471 20.9484

10 1.93806 1.80382 1.65126 1.49308 1.36215 1.29547 1.25629 1.007
11.6155 10.8294 9.92996 8.98688 8.18692 7.73783 7.4778 6.03531
30.2314 28.5306 26.2115 23.7423 21.5708 19.8231 18.204 15.708
30.5505 28.8901 27.3023 25.3998 23.0609 20.4233 19.5414 15.8738
55.4176 51.8978 47.8058 43.39 39.4041 36.6649 35.1095 28.7945

15 1.94655 1.81139 1.65791 1.49895 1.3677 1.30157 1.26267 1.01141
11.9506 11.1299 10.1949 9.22147 8.40836 7.97825 7.72685 6.20943
32.4399 30.247 27.7372 25.1042 22.8681 21.6068 20.8769 16.8555
45.347 43.3142 40.921 38.0455 34.4964 29.9319 27.3397 23.5619
60.9894 56.9502 52.3063 47.394 43.1404 40.553 39.057 31.6896

20 1.94955 1.81407 1.66026 1.50103 1.36966 1.30373 1.26493 1.01297
12.0753 11.2415 10.293 9.30821 8.49032 8.06791 7.8202 6.27423
33.2016 30.9307 28.3406 25.6387 23.3723 22.1529 21.4418 17.2513
60.4627 57.7447 54.1446 49.0496 44.62 39.8473 36.4316 31.4159
63.4443 59.1681 54.6767 50.7988 46.1299 42.3338 40.8514 32.9651

In Fig. 3, convergence of the first five natural frequencies with respect to the number of
terms N used in DTM application is shown, where L/h = 5 and k = 0.5. To evaluate up
to the fifth natural frequency to five-digit precision, it has been necessary to take 45 terms.
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Additionally, it is seen that higher modes appear when more terms are taken into account in
DTM application. Thus, depending on the order of the required modes, one must try a few
values for the term number at the beginning of the calculations in order to find the adequate
number of terms. For instance, only N = 50 is enough for the results given in Tables 5, 7 and 8.

Fig. 3. Convergence of the first five natural frequencies with respect to the number of terms N

6. Conclusion

In this study, formulation of a functionally graded Timoshenko beam that undergoes flapwise
bending vibration is derived by introducing several explanotary figures and tables. Applying Ha-
milton’s principle to the obtained energy expressions, governing differential equations of motion
and the boundary conditions are derived. In the solution part, the equations of motion, including
the parameters for rotary inertia, shear deformation, power law index parameter and slenderness
ratio are solved using an efficient mathematical technique, called the differential transform me-
thod (DTM). Natural frequencies are calculated and effects of the above mentioned parameters
are investigated.
Considering the calculated results,the following conclusions are reached:
• As the slenderness ratio L/h increases, the natural frequencies increase;

• The effect of the slenderness ratio on the frequencies is negligible forlong FG beams (i.e.,
L/h ­ 20);

• The natural frequencies decrease as the value of the power-law exponent k increases.
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7. Future work

According to the author’s knowledge, the Differential Transform Method has not been applied
to functionally graded Timoshenko beams in literature before. Therefore, this gap is aimed to
be fulfilled in this paper. However, in this study, a functionally graded Timoshenko beam with
a power-law gradient is considered and the efficiency of DTM has not been examined for other
gradients such as exponent gradient (Tang et al., 2014; Hao and Wei, 2016; Li et al., 2013; Wang
et al., 2016). The examination of the DTM efficiency for other gradient types can be considered
as a challenging future work.
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