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Free vibration analysis of homogeneous and isotropic thin circular and annular plates with
discrete elements such as elastic ring supports is considered. The general form of quasi-
-Green’s function for thin circular and annular plates is obtained. The nonlinear characteri-
stic equations are defined for thin circular and annular plates with different boundary condi-
tions and different combinations of the core and support radius. The continuity conditions at
the ring supports are omitted based on the properties of Green’s function. The fundamental
frequency of axisymmetric vibration has been calculated using the Newton-Raphson method
and calculation software. The obtained results are compared with selected results presented
in literature. The exact frequencies of vibration presented in a non-dimensional form can
serve as benchmark values for researchers to validate their numerical methods when applied
for uniform thin circular and annular plate problems.
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1. Introduction

The study of vibration of a thin circular and annular plate is basic in structural mechanics.
Components of circular and annular plates are commonly used in the aerospace industry and
aviation as well as in marine and civil engineering applications. Circular and annular plates are
the most critical structural elements in high speed rotating engineering systems. The natural
frequencies of circular and annular plates have been studied extensively for more than a centu-
ry, because if only the frequency of external load matches the natural frequency of the plate,
destruction may occur. Additionally, the influence of elastic or rigid ring supports on dynamic
behavior of plates have been studied in a lot of works, because it used to stabilize or to increase
the frequency of plates. Knowledge about distribution of ring supports of variable stiffness can
allow one to predict dynamic behavior of structural elements such us circular and annular plates.
The free vibration of circular and annular plates with concentric ring supports have been

studied in a lot of works. Bodine (1967) studied the influence of rigid supports on the funda-
mental frequency of circular plates in which radius of the supports was small. Kunukkasseril
and Swamidas (1974) formulated equations for circular plates with elastic supports, but they
solved the free vibration problem for a free circular plate. Singh and Mirza (1976) studied free
axisymmetric vibration of circular plates elastically supported along two concentric circles. Azi-
mi (1988) studied natural vibration of circular plates with elastic and rigid supports using the
receptance method. Wang and Thevendran (1993) analyzed free vibration of annular plates with
concentric supports using by the Rayleigh-Ritz method. Ding (1994) solved the free vibration
problem for arbitrarily shaped plates with concentric elastic and rigid ring supports. Liu and
Chen (1995) studied axisymmetric vibration of annular and circular plates using simple finite
analysis. In works by Vega et al. (1999) free vibration analysis was presented for a concentrically
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supported annular plate with a free edge using the optimized Rayleigh-Ritz method. Laura et
al. (1999) analyzed transverse vibration of a circular plate with a free edge and concentric ring
supports. Vega et al. (2000) analyzed free vibration of concentrically supported annular plates
with one edge clamped or simply supported. The fundamental frequency of a free thin circular
plate supported on a ring was analyzed by Wang (2001). Influence of the stiffness and location
of elastic ring supports on the fundamental frequency of circular plates were analyzed by Wang
and Wang (2003). Wang (2006, 2014) studied vibration modes of concentrically supported free
circular and annular plates with movable edges. Rao and Rao (2014a) analyzed free vibration of
annular plates with both edges elastically restrained and resting on the Winkler foundation. Ad-
ditionally, Rao and Rao (2014b) analyzed free vibration of a thin circular plate with concentric
ring and elastic edge support.
In the works presented above, the analyzed plates were separated into two regions for one

ring supports. The number of separated regions increases if the number of considered elastic
ring supports increases. In this approach, the solution to boundary value problem is complica-
ted. Additionally, continuity conditions between the support and plate must be used to obtain
characteristic equations. Solution to the boundary value problem is very tedious and more com-
plicated based on continuity conditions, because characteristic matrices have a large dimension.
Application of Green’s function to the solution to the boundary value problem of free vibra-

tion of plates allow one to neglect the continuity condition. In the works of Kukla and Szewczyk
(2004, 2005, 2007) Green’s function approach to frequency analysis is presented for circular
and annular thin plates with elastic supports. The authors calculated nontrivial constants of
general solutions to the differential equation to obtain a full form of Green’s function for free,
simply-supported and clamped plates. The nontrivial constants have a very complicated form,
and calculating them is very tedious for different boundary conditions such as sliding supports
or elastic constraints.
The novelty of the paper is quasi-Green’s function (not full form) approach to obtain cha-

racteristic equations of concentrically supported circular and annular plates with clamped, free,
simply-supported and sliding (movable) edges or elastic constraints. The quasi-Green function is
obtained by the method presented in the previous works (Żur, 2015, 2016a). Nonlinear charac-
teristic equations of plates are obtained without calculating nontrivial constants of the general
solution to the differential equation. The numerical results of investigation are compared with
selected results presented in literature. The exact fundamental frequencies of axisymmetric vi-
bration are presented in a non-dimensional form for different combinations of the core and
support radius as well as selected values of parameters of elastic constraints.

2. Statement of the problem

Consider an isotropic, homogeneous annular (circular) thin plate of constant thickness h in
cylindrical coordinates (r, θ, z) with the z-axis along the longitudinal direction. The geometry
and coordinate system of the considered plate is shown in Fig. 1. The partial differential equation
for free vibration of thin uniform annular (circular) plates has the following form

∇4W (r, t) +
ρh

D

∂2W (r, t)
∂t2

= −
χ
∑

j=1

KjW (r, t)δ(r − rj) (2.1)

where ρ is mass density, D = Eh3/[12(1 − ν2)] is flexural rigidity, E is Young’s modulus, ν is
Poisson’s ratio, ∇2 = (∂2/∂r2) + (1/r)(∂/∂r) is Laplacian, Kj is a coefficient of normalized
stiffness of the supports, δ is Dirac’s delta function, rj is the position of elastic ring supports,
χ is the number of elastic ring supports andW (r, t) is small deflection compared with thickness h
of the plate.
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Fig. 1. The geometry and coordinate system of the annular plate with radius of the hole R1

The axisymmetric deflection of an annular (circular) plate may be expressed as follows

W (r, t) = w(r)eiωt (2.2)

where w(r) is the radial mode function, ω is the natural frequency, and i2 = −1. Substituting
Eq. (2.2) into Eq. (2.1) and using the dimensionless coordinates ξ = r/R and κj = rj/R, the
governing differential equation of the annular (circular) plate is obtained

L(w) − λ2w = −
χ
∑

j=1

Kjw(κj)δ(ξ − κj) (2.3)

where

L(w) ≡
d4w

dξ4
+
2
ξ

d3w

dξ3
−
1
ξ2
d2w

dξ2
+
1
ξ3
dw

dξ
(2.4)

is the differential operator and

λ = ωR2
√

ρh/D (2.5)

is the dimensionless frequency of vibration.
The boundary conditions at the outer edge (ξ = 1) of the annular (circular) plate may be one

of the following: clamped, simply supported, free, sliding supports and elastic supports. These
conditions may be written in terms of the radial mode function w(ξ) in the following form:
— clamped

w(ξ)|ξ=1 = 0
dw

dξ

∣

∣

∣

ξ=1
= 0 (2.6)

— simply supported

w(ξ)|ξ=1 = 0 M(w)|ξ=1 =
(d2w

dξ2
+
ν

ξ

dw

dξ

)

ξ=1
= 0 (2.7)

— free

M(w)|ξ=1 = 0 V (w)|ξ=1 =
(d3w

dξ3
+
1
ξ

d2w

dξ2
−
1
ξ2
dw

dξ

)

ξ=1
= 0 (2.8)
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— movable edges (sliding)

dw

dξ

∣

∣

∣

ξ=1
= 0 V (w)|ξ=1 = 0 (2.9)

— elastic supports

Φ(w)|ξ=1 =
[(d2w

dξ2
+ ν

dw

dξ

)

+ φ
dw

dξ

]

ξ=1
= 0

Ψ(w)|ξ=1 =
[(d3w

dξ3
+
d2w

dξ2
−
dw

dξ

)

− ψw
]

ξ=1
= 0

(2.10)

M(w) and V (w) are the normalized radial bending moment and the normalized effective shear
force, respectively. φ = KφR/DR and ψ = KψR

3/DR are the parameters of elastic constraints.
Kφ and Kψ are the rotational and translational spring constants, respectively. Similar boundary
conditions may be defined at the inner edge (ξ = R1/R = ξ1), depending on considered annular
plates.

3. Finding quasi-Green’s function

The general solution to the homogeneous differential equation for thin annular (circular) plates

L(w) − λ2w = 0 (3.1)

is a linear combination of the Bessel functions presented in the following form (McLachlan, 1955)

w(ξ) = C1J0(λξ) + C2I0(λξ) +C3Y0(λξ) + C4K0(λξ) (3.2)

where J0(λξ), Y0(λξ) are the Bessel functions of the first and second kind, I0(λξ), K0(λξ) are
the modified Bessel functions of the first and second kind. The quasi-Green function K(ξ, α) is a
particular solution to Eq. (3.1) and may be received from the formula presented in the following
form (Jaroszewicz and Zoryj, 2005; Żur, 2015)

K(ξ, α) =
D(ξ, α)

W (α)p0(α)
(3.3)

where p0(α) = 1 is a coefficient placed in front of the highest order of derivative of differential
equation (3.1), and

D(ξ, α) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J0(λα) I0(λα) Y0(λα) K0(λα)
dJ0(λα)
dα

dI0(λα)
dα

dY0(λα)
dα

dK0(λα)
dα

d2J0(λα)
dα2

d2I0(λα)
dα2

d2Y0(λα)
dα2

d2K0(λα)
dα2

J0(λξ) I0(λξ) Y0(λξ) K0(λξ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

W (α) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J0(λα) I0(λα) Y0(λα) K0(λα)
dJ0(λα)
dα

dI0(λα)
dα

dY0(λα)
dα

dK0(λα)
dα

d2J0(λα)
dα2

d2I0(λα)
dα2

d2Y0(λα)
dα2

d2K0(λα)
dα2

d3J0(λα)
dα3

d3I0(λα)
dα3

d3Y0(λα)
dα3

d3K0(λα)
dα3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.4)
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The elements of the matrix D andW have the following form

dJ0(λα)
dα

= −λJ1(λα)
dI0(λα)
dα

= λI1(λα)

dY0(λα)
dα

= −λY1(λα)
dK0(λα)

dα
= −λK1(λα)

(3.5)

d2J0(λα)
dα2

=
λ2

2
[J0(λα) + J2(λα)]

d2I0(λα)
dα2

=
λ2

2
[I0(λα) + I2(λα)]

d2Y0(λα)
dα2

=
λ2

2
[Y0(λα) + Y2(λα)]

d2K0(λα)
dα2

=
λ2

2
[K0(λα) +K2(λα)]

(3.6)

d3J0(λα)
dα3

=
λ3

4
[3J1(λα) + J3(λα)]

d3I0(λα)
dα3

=
λ3

4
[3I1(λα) + I3(λα)]

d3Y0(λα)
dα3

=
λ3

4
[3Y1(λα)− Y3(λα)]

d3K0(λα)
dα3

= −
λ3

4
[3K1(λα) +K3(λα)]

(3.7)

After calculations, the function D(ξ, α) has the form

D(ξ, α) =
2λ2

πα
[2I0(λξ)K0(λα) − 2I0(λα)K0(λξ) + πJ0(λξ)Y0(λα)− πJ0(λα)Y0(λξ)] (3.8)

Bessel function (3.2) expresses linear independent solutions, thus the Wronskian must satisfy
the condition (Stakgold and Holst, 2011)

W (α) =
8λ4

πα2
6= 0 (3.9)

Condition (3.9) is satisfied for a circular plate (0 < α ¬ 1) and an annular plate (0 < ξ1 ¬ α ¬ 1).
After calculations, the quasi-Green function has the form

K(ξ, α) =
α

4λ2
[2I0(λξ)K0(λα) − 2I0(λα)K0(λξ)− πJ0(λα)Y0(λξ) + πJ0(λξ)Y0(λα)] (3.10)

and satisfies the conditions

K(a, a) =
∂K(ξ, α)

∂ξ

∣

∣

∣

ξ=a
=
∂2K(ξ, α)

∂ξ2

∣

∣

∣

ξ=a
= 0

∂3K(ξ, α)
∂ξ3

∣

∣

∣

ξ=a
= 1 (3.11)

according to properties of the influence functions (Stakgold and Holst, 2011).

4. Solution of the problem for the circular plate

In the previous paper (Żur, 2016b), the possibility of solving the similar boundary value problem
was proposed for non-uniform annular plates without calculations. Based on the paper of Żur
(2016b), the limit limξ→0 Y0(λξ) = ∞, limξ→0K0(λξ) = ∞ of linear independent solutions to
Eq. (2.3) for the circular plate can be presented in the following form

K(ξ, λ,κ,K)a = J0(λξ)−
χ
∑

j=1

KjJ0(λκj)G(ξ, κj)

K(ξ, λ,κ,K)b = I0(λξ)−
χ
∑

j=1

KjI0(λκj)G(ξ, κj)

(4.1)
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where

G(ξ, κj) = K(ξ, κj)H(ξ − κj)

K(ξ, κj) =
κj
4λ2
[2I0(λξ)K0(λκj)− 2I0(λκj)K0(λξ)− πJ0(λκj)Y0(λξ) + πJ0(λξ)Y0(λκj)]

(4.2)

and

κ = [κ1, . . . , κχ] K = [K1, . . . ,Kχ] (4.3)

and H(ξ − κj) is the Heaviside function.
The characteristic equations ∆ = 0 of the circular plate for different boundary conditions

and different values of the parameters κj and Kj are obtained from well known characteristic
determinants given by:
— clamped

∆(λ,κ,K) ≡

∣

∣

∣

∣

∣

∣

K(ξ, λ,κ,K)a K(ξ, λ,κ,K)b
∂K(ξ, λ,κ,K)a

∂ξ

∂K(ξ, λ,κ,K)b
∂ξ

∣

∣

∣

∣

∣

∣

|ξ=1 (4.4)

— simply supported

∆(λ,κ,K) ≡

∣

∣

∣

∣

∣

K(ξ, λ,κ,K)a K(ξ, λ,κ,K)b
M [K(ξ, λ,κ,K)a] M [K(ξ, λ,κ,K)b]

∣

∣

∣

∣

∣

ξ=1

(4.5)

— free

∆(λ,κ,K) ≡

∣

∣

∣

∣

∣

M [K(ξ, λ,κ,K)a] M [K(ξ, λ,κ,K)b]
V [K(ξ, λ,κ,K)a] V [K(ξ, λ,κ,K)b]

∣

∣

∣

∣

∣

ξ=1

(4.6)

— sliding

∆(λ,κ,K) ≡

∣

∣

∣

∣

∣

∣

∂K(ξ, λ,κ,K)a
∂ξ

∂K(ξ, λ,κ,K)b
∂ξ

V [K(ξ, λ,κ,K)a] V [K(ξ, λ,κ,K)b]

∣

∣

∣

∣

∣

∣

ξ=1

(4.7)

— elastic supports

∆(λ,κ,K, φ, ψ) ≡

∣

∣

∣

∣

∣

Φ[K(ξ, λ,κ,K)a] Φ[K(ξ, λ,κ,K)b]
Ψ [K(ξ, λ,κ,K)a] Ψ [K(ξ, λ,κ,K)b]

∣

∣

∣

∣

∣

ξ=1

(4.8)

5. Solution of the problem for the annular plate

The linear independent solutions to Eq. (2.3) for the annular plate can be presented in the
following form

Ba ≡ K(ξ, λ,κ,K)a = J0(λξ)−
χ
∑

j=1

KjJ0(λκj)G(ξ, κj)

Bb ≡ K(ξ, λ,κ,K)b = I0(λξ)−
χ
∑

j=1

KjI0(λκj)G(ξ, κj)

Bc ≡ K(ξ, λ,κ,K)c = Y0(λξ)−
χ
∑

j=1

KjY0(λκj)G(ξ, κj)

Bd ≡ K(ξ, λ,κ,K)d = K0(λξ)−
χ
∑

j=1

KjK0(λκj)G(ξ, κj)

(5.1)
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The characteristic equations ∆ = 0 of the annular plate for different boundary conditions and
different values of the parameters κj and Kj are obtained from well known characteristic deter-
minants given by:
— free outer edge and clamped inner edge

∆(λ,κ,K) ≡

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M [Ba]|ξ=1 M [Bb]|ξ=1 M [Bc]|ξ=1 M [Bd]|ξ=1
V [Ba]|ξ=1 V [Bb]|ξ=1 V [Bc]|ξ=1 V [Bd]|ξ=1
Ba|ξ=ξ1 Bb|ξ=ξ1 Bc|ξ=ξ1 Bd|ξ=ξ1
∂Ba
∂ξ

∣

∣

∣

ξ=ξ1

∂Bb
∂ξ

∣

∣

∣

ξ=ξ1

∂Bc
∂ξ

∣

∣

∣

ξ=ξ1

∂Bd
∂ξ

∣

∣

∣

ξ=ξ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.2)

— free outer edge and simply supported inner edge

∆(λ,κ,K) ≡

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M [Ba]|ξ=1 M [Bb]|ξ=1 M [Bc]|ξ=1 M [Bd]|ξ=1
V [Ba]|ξ=1 V [Bb]|ξ=1 V [Bc]|ξ=1 V [Bd]|ξ=1
Ba|ξ=ξ1 Bb|ξ=ξ1 Bc|ξ=ξ1 Bd|ξ=ξ1

M [Ba]|ξ=ξ1 M [Bb]|ξ=ξ1 M [Bc]|ξ=ξ1 M [Bd]|ξ=ξ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.3)

— free both edges

∆(λ,κ,K) ≡

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M [Ba]|ξ=1 M [Bb]|ξ=1 M [Bc]|ξ=1 M [Bd]|ξ=1
V [Ba]|ξ=1 V [Bb]|ξ=1 V [Bc]|ξ=1 V [Bd]|ξ=1
M [Ba]|ξ=ξ1 M [Bb]|ξ=ξ1 M [Bc]|ξ=ξ1 M [Bd]|ξ=ξ1
V [Ba]|ξ=ξ1 V [Bb]|ξ=ξ1 V [Bc]|ξ=ξ1 V [Bd]|ξ=ξ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.4)

— free outer edge and sliding inner edge

∆(λ,κ,K) ≡

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M [Ba]|ξ=1 M [Bb]|ξ=1 M [Bc]|ξ=1 M [Bd]|ξ=1
V [Ba]|ξ=1 V [Bb]|ξ=1 V [Bc]|ξ=1 V [Bd]|ξ=1
∂Ba
∂ξ

∣

∣

∣

ξ=ξ1

∂Bb
∂ξ

∣

∣

∣

ξ=ξ1

∂Bc
∂ξ

∣

∣

∣

ξ=ξ1

∂Bd
∂ξ

∣

∣

∣

ξ=ξ1

V [Ba]|ξ=ξ1 V [Bb]|ξ=ξ1 V [Bc]|ξ=ξ1 V [Bd]|ξ=ξ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.5)

— free inner edge and clamped outer edge

∆(λ,κ,K) ≡

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M [Ba]|ξ=ξ1 M [Bb]|ξ=ξ1 M [Bc]|ξ=ξ1 M [Bd]|ξ=ξ1
V [Ba]|ξ=ξ1 V [Bb]|ξ=ξ1 V [Bc]|ξ=ξ1 V [Bd]|ξ=ξ1
Ba|ξ=1 Bb|ξ=1 Bc|ξ=1 Bd|ξ=1
∂Ba
∂ξ

∣

∣

∣

ξ=1

∂Bb
∂ξ

∣

∣

∣

ξ=1

∂Bc
∂ξ

∣

∣

∣

ξ=1

∂Bd
∂ξ

∣

∣

∣

ξ=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.6)

— elastic constraints at the inner edge and free outer edge

∆(λ,κ,K, φ, ψ) ≡

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M [Ba]|ξ=1 M [Bb]|ξ=1 M [Bc]|ξ=1 M [Bd]|ξ=1
V [Ba]|ξ=1 V [Bb]|ξ=1 V [Bc]|ξ=1 V [Bd]|ξ=1
Φ[Ba]|ξ=ξ1 Φ[Bb]|ξ=ξ1 Φ[Bc]|ξ=ξ1 Φ[Bd]|ξ=ξ1
Ψ [Ba]|ξ=ξ1 Ψ [Bb]|ξ=ξ1 Ψ [Bc]|ξ=ξ1 Ψ [Bd]|ξ=ξ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.7)
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6. Results and discussion

The numerical results for fundamental frequencies of elastically supported circular plates are
presented in Tables 1 and 2 with comparison to the results by Azimi (1988), Ding (1994),
Wang and Wang. (2003). The numerical results for fundamental frequencies of free vibration
of free circular plates with rigid ring supports are presented in Table 3 with comparison to the
results by Wang (2014). The numerical results for fundamental frequencies of free vibration of
free elastically supported annular plates with different boundary condition at the inner edge are
presented in Tables 4 and 5 for different combinations of the radius of the core and supports. The
fundamental frequencies of free vibration of circular plates with elastic constraints and interior
ring supports of variable stiffness are presented in Table 6. Additionally, the eigenvalues of
circular plates with elastic constraints depending on radius and stiffness of interior ring supports
are shown in Figs. 2 and 3.

Table 1. The fundamental frequency λ0 of free vibration of circular plates with the elastic ring
support

K1 κ1
Dimensionless
frequency λ0

Boundary conditions

Clamped
Simply

Free Sliding
supported

10

0 GF 3.196 2.221 0.211 0.212
0.1 GF 3.272 2.360 1.115 1.171

0.2

GF 3.326 2.460 1.357 1.383
Wang and Wang (2003) 3.325 2.460 – –

Azimi (1988) 3.326 2.461 – –
Ding (1994) 3.322 – – –

0.3 GF 3.348 2.523 1.497 1.532

0.4

GF 3.338 2.547 1.620 1.656
Wang and Wang (2003) 3.338 2.547 – –

Azimi (1988) 3.338 2.547 – –
Ding (1994) 3.334 – – –

0.5 GF 3.304 2.530 1.736 1.765

0.6

GF 3.262 2.478 1.844 1.856
Wang and Wang (2003) 3.262 2.478 – –

Azimi (1988) 3.262 2.479 – –
Ding (1994) 3.262 – – –

0.7 GF 3.225 2.403 1.928 1.928

0.8

GF 3.204 2.321 1.960 1.980
Wang and Wang (2003) 3.204 2.321 1.961 –

Azimi (1988) 3.199 2.321 – –
Ding (1994) 3.204 – – –

The fundamental frequencies of free vibration of annular plates with the clamped outer edge
and the free inner edge (rigid interior support) are presented in Table 7 with comparison to the
results by Vega (2000). The eigenvalues of free annular plates with elastic constraints at the
inner edge and interior ring supports are presented in Table 8 for different combinations of the
radius of the core and supports.
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Table 2. The fundamental frequency λ0 of free vibration of circular plates with the elastic ring
support

K1 κ1
Dimensionless
frequency λ0

Boundary conditions

Clamped
Simply

Free Sliding
supported

1000

0 GF 3.204 2.223 0.666 0.667
0.1 GF 4.677 3.805 1.946 2.238

0.2

GF 5.175 4.202 2.049 2.418
Wang and Wang (2003) 5.175 4.202 – –

Azimi (1988) 5.187 4.210 – –
Ding (1994) 4.929 – – –

0.3 GF 5.763 4.682 2.187 2.656

0.4

GF 6.110 5.276 2.374 2.979
Wang and Wang (2003) 6.110 5.276 – –

Azimi (1988) 6.129 5.282 – –
Ding (1994) 6.114 – – –

0.5 GF 5.195 5.136 2.619 3.403

0.6

GF 4.503 4.479 2.891 3.803
Wang and Wang (2003) 4.503 4.479 – –

Azimi (1988) 4.512 4.486 – –
Ding (1994) 4.492 – – –

0.7 GF 3.967 3.962 2.992 3.707

0.8

GF 3.539 3.532 2.787 3.438
Wang and Wang (2003) 3.539 3.532 – –

Azimi (1988) 3.547 3.537 – –
Ding (1994) 3.547 – – –

Table 3. The fundamental frequency λ0 of free vibration of free circular plates with the rigid
ring support

K1 κ1
Dimensionless frequency λ0
GF Wang (2014)

∞

0 3.751 3.752
0.1 3.909 3.909
0.2 4.275 4.275
0.3 4.851 4.851
0.4 5.706 5.707
0.5 6.929 6.929
0.6 8.396 8.390
0.7 8.960 8.959
0.8 7.809 7.809
0.9 6.235 6.235
1.0 4.935 4.935
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Table 4. The fundamental frequency λ0 of free vibration of free annular plates with different
boundary conditions at the inner edge and interior elastic support

K1 ξ1 κ1
Dimensionless
frequency

Boundary conditions at the inner edge

Clamped
Simply

Free Sliding
supported

10

0.1 0.2

λ0

2.043 1.826 1.350 1.364
0.1 0.4 2.050 1.886 1.617 1.624
0.1 0.6 2.207 2.091 1.848 1.848
0.1 0.9 2.658 2.537 1.931 1.946
0.3 0.5 2.569 1.918 1.730 1.778
0.3 0.7 2.697 2.209 1.975 1.975
0.3 0.9 3.003 2.587 1.959 2.041
0.5 0.7 3.616 2.235 2.039 2.068
0.5 0.9 3.812 2.736 2.086 2.193
0.7 0.8 6.077 2.634 2.311 2.363
0.7 0.9 6.119 3.008 2.401 2.436
0.8 0.9 9.197 3.275 2.658 2.658

Table 5. The fundamental frequency λ0 of free vibration of free annular plates with different
boundary conditions at the inner edge and interior elastic support

K1 ξ1 κ1
Dimensionless
frequency

Boundary conditions at the inner edge

Clamped
Simply

Free Sliding
supported

1000

0.1 0.2

λ0

2.087 1.925 1.979 2.091
0.1 0.4 2.117 1.105 2.331 2.400
0.1 0.6 9.335 3.843 2.852 2.934
0.1 0.9 4.685 4.215 2.467 2.545
0.3 0.5 2.684 7.401 2.352 2.859
0.3 0.7 12.106 4.769 2.887 3.561
0.3 0.9 6.175 5.214 2.439 2.987
0.5 0.7 13.526 13.323 2.859 4.266
0.5 0.9 9.260 7.249 2.648 4.106
0.7 0.8 5.526 6.437 3.293 6.321
0.7 0.9 8.396 8.054 3.432 7.049
0.8 0.9 9.697 7.774 4.294 8.334
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Fig. 2. The fundamental frequency of the circular plate with elastic constraints (φ = 100, ψ = 10)
depending on the radius and stiffness of interior ring supports

Fig. 3. The fundamental frequency of the circular plate with elastic constraints (φ = 0.1, ψ = 100)
depending on the radius and stiffness of interior ring supports

Table 7. The fundamental frequency λ0 of free vibration of annular plates with the clamped
outer edge and free inner edge and the rigid interior support (K1 →∞)

κ1
ξ1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Dimensionless frequency λ0

0.1
GF 5.335 5.946 6.262 5.537 4.782 4.215 3.786 3.453

Vega et al. (2000) 5.335 5.946 6.262 5.537 4.782 4.215 3.786 3.453

0.2
GF 5.890 6.530 5.996 5.051 4.370 3.880 3.512

Vega et al. (2000) 5.890 6.530 5.996 5.051 4.370 3.880 3.512

0.3
GF 6.723 7.100 5.853 4.856 4.194 3.727

Vega et al. (2000) 6.723 7.100 5.853 4.856 4.194 3.727

0.4
GF 7.912 7.527 5.856 4.821 4.154

Vega et al. (2000) 7.912 7.527 5.856 4.821 4.154

0.5
GF 9.612 7.874 5.969 4.894

Vega et al. (2000) 9.612 7.874 5.969 4.894

0.6
GF 11.912 8.256 6.195

Vega et al. (2000) 11.912 8.256 6.196

0.7
GF 14.146 8.785

Vega et al. (2000) 14.147 8.785
0.8 GF 15.991
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Table 6. The fundamental frequency λ0 of free vibration of circular plates with elastic constra-
ints and the interior ring support

K1 κ1
Dimensionless Elastic parameters at the outer edge
frequency φ = 100, ψ = 10 φ = 0.1, ψ = 100

0 2.056 2.203
0.1 2.129 2.337
0.2 2.190 2.434
0.3 2.241 2.497

10 0.4 λ0 2.285 2.524
0.5 2.320 2.513
0.6 2.344 2.469
0.7 2.357 2.400
0.8 2.361 2.321
0 2.056 2.203
0.1 2.441 2.928
0.2 2.610 3.247
0.3 2.770 3.486

100 0.4 λ0 2.960 3.650
0.5 3.188 3.648
0.6 3.387 3.445
0.7 3.318 3.145
0.8 3.142 2.809
0 2.056 3.563
0.1 2.715 3.600
0.2 2.850 3.878
0.3 3.032 4.176

1000 0.4 λ0 3.287 4.490
0.5 3.629 4.700
0.6 3.907 4.321
0.7 3.719 3.786
0.8 3.429 3.263
0 2.714 3.624
0.1 2.769 3.746
0.2 2.888 3.973
0.3 3.068 4.250

∞ 0.4 λ0 3.327 4.536
0.5 3.664 4.700
0.6 3.908 4.410
0.7 3.743 3.892
0.8 3.458 3.354

The Poisson ratio is taken as ν = 0.3 for all considered cases. The numerical results are
obtained by using the Newton-Raphson method and Mathematica v10 software. The obtained
results are in good agreement with the results obtained by other methods presented in literature
and can be used to validate the accuracy of other numerical methods as benchmark values.
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Table 8. The fundamental frequency λ0 of free vibration of free annular plates with elastic
constraints at the inner edge and interior ring support

K1 ξ1 κ1
Dimensionless Elastic parameters at the inner edge
frequency φ = 100, ψ = 10 φ = 0.1, ψ = 100

10

0.1 0.2

λ0

1.146 1.556
0.1 0.4 1.530 1.740
0.1 0.6 1.814 2.001
0.1 0.9 2.031 2.439
0.3 0.5 1.537 1.956
0.3 0.7 1.839 2.238
0.3 0.9 1.974 2.625
0.5 0.7 1.648 2.296
0.5 0.9 1.894 2.788
0.7 0.8 1.510 2.680
0.7 0.9 1.759 3.050
0.8 0.9 1.603 3.237

1000

0.1 0.2

λ0

2.101 1.941
0.1 0.4 2.460 6.152
0.1 0.6 3.091 3.663
0.1 0.9 2.855 4.239
0.3 0.5 2.906 0.852
0.3 0.7 3.739 4.951
0.3 0.9 3.212 6.150
0.5 0.7 4.332 6.707
0.5 0.9 4.267 7.911
0.7 0.8 6.374 7.977
0.7 0.9 7.185 8.053
0.8 0.9 8.319 8.196

∞

0.1 0.2

λ0

3.308 1.296
0.1 0.4 3.687 1.463
0.1 0.6 3.972 2.000
0.1 0.9 3.022 1.351
0.3 0.5 1.175 1.937
0.3 0.7 2.071 2.120
0.3 0.9 3.834 1.271
0.5 0.7 2.995 2.030
0.5 0.9 2.644 1.335
0.7 0.8 1.998 0.999
0.7 0.9 1.683 1.385
0.8 0.9 1.046 1.293

7. Conclusions

In this paper, the quasi-Green function has been employed to solve natural vibration of elastically
supported thin circular and annular plates with different boundary conditions. The advantage of
quasi-Green’s function is the obtaining of characteristic equations without calculating nontrivial
constants in complicated forms. Additionally, the number of supports of circular and annular
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plates does not influence the dimension of characteristic matrices, because the continuity condi-
tions can be neglected. In the presented approach, the solution to the boundary value problem is
much simpler. The quasi-Green function approach can be used to the frequency analysis of plates
and beams with other discrete elements such as an additional mass or a mass on the spring.
The exact frequencies of vibration presented in a non-dimensional form can serve as benchmark
values for researchers to validate their numerical methods applied in similar problems presented
in the paper.
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