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In this work, we present an improved sliding mode control (ISMC) technique designed and
implemented for control of 6R manipulator. Sliding mode control (SMC) is a well-known
nonlinear robust method for controlling systems in the presence of uncertainties and distur-
bances and systems with complex dynamics as in manipulators. Despite this good property,
it is difficult to implement this method for the manipulator with a complex structure and
more than three degree-of-freedom because of the complicated and massive equation and
chattering phenomenon as a property of SMC in control inputs. Here, the chattering phe-
nomenon is eliminated by using an effective algorithm called ISMC and implemented to 6R
manipulator by using a low-cost control board based on an ARM microcontroller with high
accuracy and memory. The carrying load is considered as the uncertainty for the manipula-
tor, while the dynamic load carrying capacity (DLCC) is considered as a robot performance
criterion showing robustness of the controller. The results of simulations and experiments
show that the proposed approach has a good performance and is suitable and practical to
be applied for manipulators.
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1. Introduction

Models of manipulators are complex nonlinear dynamical systems with uncertainties due to dif-
ferences between mathematical models and real robots. The sliding mode control (SMC) is one
of the methods in the category of nonlinear control capable of controlling systems with uncer-
tainties. The SMC technique and the improved SMC (ISMC)-based algorithms have been used
frequently in the field of manipulator control. One of the benefits of the SMC is insensitivity to
variation of parameters such as load for manipulating. Since the dynamics of manipulators is so
complicated, the ISMC method is selected for controlling the system in this work. And yet a lot
of work in this field has been applied. Ertugrul et al. (2000) presented gain adaptation in SMC
of robotic manipulators via MIT rule. The method was implemented on a two-link planar ma-
nipulator to validate the proposed algorithm. Vega et al. (2003) presented dynamic sliding PID
control for trajectory tracking on manipulators. Implementation and comparative experimental
study on a two-DOF robot arm were expressed via PD, PID, adaptive and SMC method. Shi et
al. (2008) expressed robust control of robotic manipulators based on the integral sliding mode.
Capisani and Ferrara (2009) used a second-order SMC approach and presented experimental
test on COMAU SMART3-S2 rigid industrial manipulator with three joints. Korayem et al.
(2009) presented the observer-based SMC for determining the dynamic load-carrying capacity
of manipulators. Islam and Liu (2011) applied the SMC method for overcoming the problem of
large-scale uncertainties in control of manipulators. The parameter uncertainties and external
disturbances were considered in the modelling. Foster and Harrison (2011) expressed the experi-
mental investigation of a 5-DOF robot arm with SMC. The method was simulated and verified



266 M.H. Korayem et al.

with the experimental results. Islam et al. (2014) applied SMC and CTC control methods for a
multi-DOF articulated robotic arm manipulator and demonstrated superior performance of the
SMC by simulation results of a 6-DOF robot manipulator.
The chattering phenomenon is one of the SMC difficulties. This phenomenon occurs because

of the existence of switching nature in the sliding mode controller. It is unwanted and leads
to an excessive usage of actuator; therefore, the control law may become impractical. Many
methods have been proposed for eliminating or reducing the chattering including the boundary
layer, continuous approximations and higher order SMC methods. The methods also include
synthesized SMC with other techniques such as the fuzzy SMC, adaptive neural network, and
optimal SMC (Thangavelusamy and Ponnusamy, 2012; Beyhan et al., 2011; Sefriti et al., 2012;
Korayem et al., 2014). Obviation of the chattering phenomenon, in this paper, is the use of
ISMC applied to this problem (Ataei et al., 2014).
The model in this paper is a 6R manipulator. The first three links are made as the base

of the robot and developed by adding a wrist with three-DOF on that (Jamali et al., 2005;
Hamraz et al., 2005). The control system of this manipulator is a digital board with six PIC
chips for motors to perform open-loop control. Implementing nonlinear controllers, which are
ideal for this manipulator, is not possible. To extend the performance and options of the arm,
a new digital board based on ARM LPC1768 CortexM3 microcontroller has been designed and
built (Korayem et al., 2013). In the following, we first describe the mathematical model of the
manipulator and then design a SMC for it. Then, we briefly describe the control board and,
finally, this method is simulated and implemented for the robot.

2. SMC design

SMC is a nonlinear robust control method that is often used in cases that have uncertainty in
dynamics and external disturbance. We used this method for its inherent property in robustness
and compared to other nonlinear methods. SMC and ISMC are easily implemented.

2.1. SISO system

In order to start the procedure of designing the controller, the dynamical equation should
be expressed in the standard form as

x(n)(t) = f(x(t)) + b(x(t))u(t) (2.1)

where the scalar x(t) is the output, the scalar u(t) is the control input and x(t) =
[x(t), ẋ(t), . . . , x(n−1)(t)]T is the state vector. f(x(t)) is an uncertain nonlinear function bo-
unded by a known continuous function of x(t), and b(x(t)), similarly, is an uncertain nonlinear
function that is of known sign and is bounded by the known continuous function of x(t).
Consider the uncertainty of parameters in the system, which is denoted as follows

f(x(t)) = (1 +∆)f̂(x(t)) b(x(t)) = (1 +∆)b̂(x(t)) (2.2)

Let the subscript (̂·) means the system nominal value and symbol ∆ means the system uncerta-
inty (small value). The time-varying surface named sliding surface is defined as follows (Slotine
and Li, 1991)

s(x(t)) =
( d
dt
+ λ
)n−1
x̃(t) (2.3)

where λ is a strictly positive constant and x̃(t) = x(t) − xd(t) is the tracking error in the
variable x(t). For the second-order system, by considering n = 2, the sliding surface is obtained
as follows
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s(x(t)) = ˙̃x(t) + λx̃(t) (2.4)

The control input law in the sliding mode method is considered as

u(t) = ueq(t) + ucorr(t) (2.5)

where ueq(t) is the equivalent control input and ucorr(t) is the correction or switching control
input for reaching to the sliding surface when distanced from the sliding surface by the effect of
uncertainty and disturbance. ueq(t) is defined by solving ṡ(x(t)) = 0 and, therefore, we get

ueq(t) = b̂
−1(x(t))[−f̂ (x(t)) + ẍdesired (t)− λ ˙̃x(t)] (2.6)

Hence, ucorr(t) is defined as

ucorr(t) = −b̂
−1(x(t))k(x(t)) sgn (s(x(t)) (2.7)

To reach the sliding surface in finite time, the sliding condition that is defined as follows shall
be satisfied

1

2
s(x(t))ṡ(x(t)) ¬ −η|s(x(t))| (2.8)

and η > 0 must be satisfied as well. By assuming
∣∣∣f̂(x(t)) − f(x(t))

∣∣∣ ¬ fb b̂(x(t)) =
√
bmaxbmin (2.9)

where fb is the maximum estimation error in the bound of uncertainty of f(x(t)), bmax and
bmin are the maximum and minimum estimation errors, respectively, in the bound of b(x(t))
and considering (Slotine and Li, 1991)

k(x(t)) ­ β(fb + η) + (β − 1)|ueq(t)| (2.10)

where β =
√
bmax/bmin, the sliding condition is satisfied and implies that the system trajectories

will asymptotically converge to the sliding surface from any non-zero initial state and guarantees
the robust stability of the closed-loop system.
To eliminate the chattering phenomena in the conventional SMC, we use ucorr(t) as follows

and name it an improved SMC. In this algorithm, for the decreasing rate of variations of u(t)
around the sliding surface and in order to increase the convergence rate, the idea of using the
following sliding condition is proposed (Ataei et al., 2014)

s(x(t))ṡ(x(t)) ¬ −η|s(x(t))| exp
( −ξ

|s(x(t))|

)
− γs2(x(t)) (2.11)

in which η, γ, and ξ are strictly positive constants. Using the exponential function, makes that
whatever the distance of the scalar function s(x(t)) increases from the surface, the fall rate
with respect to time is greater and this action develops with an exponential factor. Also, the
continuous function tanh(s(x(t))/ε) is used instead of the discontinuous function sgn (s(x(t))
for preventing the chattering in which the parameter ε is the boundary layer thickness. By the
above-mentioned description, the correction input is defined as follows for the SISO system

ucorr(t) = −b̂
−1(x(t))w(x(t)) (2.12)

where

w(x(t)) =
[
fb + α exp

(
−

β

|s(x(t))|

)]
tanh
(s(x(t))
ε

)
+ γs(x(t))

α > η α− η < 2fb exp
(
−

β

|s(x(t))|

) (2.13)

Therefore, the control input is defined as

u(t) = b̂−1(x(t))[−f̂ (x(t)) + ẍdesired (t)− λ ˙̃x(t)− w(x(t))] (2.14)
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2.2. MIMO system

In order to extend the method for MIMO systems, a system of second order differential
equations is regarded as follows

q̈(t) = f(q(t), q̇(t)) +B(q(t), q̇(t))u(t) (2.15)

where q(t) ∈ ℜn is the system variable and u(t) ∈ ℜn is the input vector and

f(q(t), q̇(t)) : ℜn ×ℜn → ℜn

B(q(t), q̇(t)) : ℜn ×ℜn → ℜn×n
(2.16)

and (2.15) is changed to the state-space form

ẋ(t) =

[
q̇(t)

f(q(t), q̇(t))

]
+

[
0n×n

B(q(t), q̇(t))

]
u(t) (2.17)

in which the state vector has the shape of x(t) = [q(t), q̇(t)]T. The maximum bound of uncer-
tainties in system (2.2) are modified as

f(x(t)) = f̂(x(t)) +∆f̂(x(t)) B(x(t)) = (I+∆)B̂(x(t)) (2.18)

where ∆ is the vector of the uncertainty coefficient, ∆ is a diagonal matrix of that and I is the
identity matrix. Hence, the maximum bound of f(x(t)) is restricted to

∣∣∣f̂(x(t))− f(x(t))
∣∣∣ ¬ fb (2.19)

and B(x(t)) to

B̂ij(x(t)) =
√
bmax,ijbmin,ij (2.20)

which leads to an extended form of (2.10)

Ki(x(t)) ­ β(fb,i + ηi) + (β − 1)|ueq,i(t)| (2.21)

in which β = bmax/bmin, bmax = max(bmax,ij) and bmin = min(bmin,ij). Ki(x(t)) is also the i-th
diagonal element of the matrix K(x(t)). The control law of the conventional SMC possesses the
shape

u(t) = B̂−1(x(t))[−f̂ (x(t)) + ẍdesired (t)− λ ˙̃x(t)]− B̂
−1(x(t))K(x(t)) sgn (s(x(t)) (2.22)

where s(x(t)) = ˙̃x(t)+λx̃(t). The MIMO structure of the control law of ISMC (2.14) is rewritten

u(t) = B−1(x(t))[−f̂ (x(t)) + ẍdesired (t)− λ ˙̃x(t)−w(x(t))] (2.23)

where

wi(x(t)) =
[
fb,i + αi exp

(
−

β

|si(x(t))|

)]
tanh
(si(x(t))
ε

)
+ γisi(x(t)) (2.24)

in which αi > ηi and

αi − ηi < 2fb,i exp
(
−

β

|si(x(t))|

)
(2.25)
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3. Applied ISMC for the robot manipulator

Let us consider generalized coordinates of an n-link manipulator as q = {q1, . . . , qn}, where qi is
the generalized coordinate of the i-th joint; either revolute or prismatic. By using Lagrange’s
approach, the manipulator dynamical equation can be expressed as

Mn×n(q(t))q̈n×1(t) + cn×1(q(t), q̇(t)) + gn×1(q(t)) = un×1(t) (3.1)

where Mn×n(q(t)) is the inertia matrix, cn×1(q(t), q̇(t)) is a vector consisting of Coriolis and
centrifugal forces, gn×1(q(t)) is the gravity force, and un×1(t) is the input vector of joints.
Elements of state-space equation (2.17) are structured as

f(q(t), q̇(t)) = −M−1(q(t))[c(q(t), q̇(t)) + g(q(t))]

B(q(t), q̇(t)) =M−1(q(t))
(3.2)

Inserting the proposed ISMC structure into the robot equation of motion changes Eq. (2.23)
into

u(t) =M(q(t))
(
M−1(q(t))[c(q(t), q̇(t)) + g(q(t))] + q̈desired (t)− λ ˙̃q(t)−w(s)

)
(3.3)

where

wi(si) =
[
fb,i + αi exp

(
−

β

|si(q(t))|

)]
tanh
(si(q(t))
ε

)
+ γisi(q(t)) (3.4)

in which wi(si) is a set as coefficients of tanh function fb,i+αi exp[−β/|si(q(t))|]; and γisi(q(t))
is added to the first term, fb,i+αi exp[−β/|si(q(t))|] depends on the sign of si(q(t)). As shown in
Fig. 1a, near the origin, wi(si) is equal to zero and then increases exponentially, and far from the
origin converges to a constant value. Figures 1b-3b present the effect of parameters on behaviour
of wi(si).

Fig. 1. (a) wi(si) function versus the switching function in the ISMC method; (b) changes of the design
parameter α of the ISMC method in function of wi(si)

As it is depicted in Fig. 21b, an increase in αi results in an increase of the ultimate value
of wi(si), but around the origin, the effect is less observable. Hence the changes of αi do not
contribute to the chartering. In Fig. 2a, an increase in β makes wi(si) more nonlinear near the
origin and does not affect the bounds of wi(si), hence a steady state error might occur. The
effects of changes in ε (boundary layer width) are similar to β and do not change the final value
of wi(si), though it might lead to the steady state error, presented in Fig. 2b. Figures 3a and 3b
show the similarity of f and γ behavior to α as well.
With regard to the try-and-error procedure as well as experimental and simulation study,

the mentioned parameters have been designed for the 6R manipulator. The ISMC eliminates
the chattering and provides more precision rather than the conventional SMC.
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Fig. 2. Changes of the design parameter (a) β and (b) ε of the ISMC method in function of wi(si)

Fig. 3. Changes of the design parameter (a) f and (b) γ of the ISMC method in function of wi(si)

4. Dynamic load carrying capacity

The dynamic load carrying capacity (DLCC) is one of the important parameters of robots that
should be determined. The DLCC is described as the maximum load that a manipulator can
repeatedly lift and carry on the extended configuration in a particular path with an acceptable
tracking accuracy. The DLCC is a useful criterion for the assessment of different controllers on
the same arm, especially for the estimation of energy consumption and efficiency. The DLCC of
a manipulator calculates with respect to the limitation of motors and error of the final point in
a finite time. Upper and lower limits of motor torques can be computed from

umax,i(t) = us,i −
us,i
ωnl,i
q̇i(t) umin,i(t) = −us,i −

us,i
ωnl,i
q̇i(t) (4.1)

where us,i is the stall torque of the i-th motor, ωnl,i is no-load speed of that and q̇i(t) is actual
rotational speed of the motor. In the point-to-point motion, the carrying load increases until the
error of the final point in a finite time reaches the allowable bound, while in trajectory tracking,
it increases until the torques of motors touch the bounds of limitations. The algorithm of finding
the DLCC is shown in Fig. 4.

5. Model of 6R manipulator

5.1. Mechanical structure

The case study of this article is a 6R manipulator with six revolute joints that have massive
and complex dynamic and uncertainty in the modelling that shows the capability of the purposed
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Fig. 4. Algorithms for finding DLCC: (a) point-to-point motion and (b) trajectory tracking

Fig. 5. 6R manipulator (Korayem et al., 2013)

controller. Figure 5 presents the 6R manipulator. Figure 6 shows a schematic of the robot. The
Denavit-Hartenberg parameters of the robot are presented in Table 1.

Korayem et al. (2013) described the forward kinematics, inverse kinematics, and Jacobian
matrix of 6R. The hardware of the previous controller (Korayem et al., 2010) was improved to
perform the nonlinear methods better. The new developed digital board of 6R (Korayem et al.,
2013) consists of LPC1768 ARM microcontroller. This board is capable of computing massive
programs with adequate speed. In the next Subsection, the structure of hardware is explained
to a greater extent.
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Fig. 6. Schematic of 6R manipulator (Korayem et al., 2013)

Table 1. The Denavit-Hartenberg parameters of 6R arm

Joint i ai [mm] di [mm] αi [
◦]

1 0 438 −90

2 251.5 0 0

3 125 0 0

4 92 0 90

5 0 0 −90

6 0 152.8 0

5.2. Hardware of controller

The old system of the controller of 6R was built in a way to perform open loop control
(Ahmadi et al., 2009), and it needed an alternative electronic controller unit (ECU) to upgrade
the whole system to a closed loop level. The previous ECU was based on PIC microcontrollers;
the system used six PIC chips to perform the task. The new 6R robot main board consists
of LPC1768 microcontroller, input feedback read, PWM output, and digital communications.
LPC1768 is a 32 bit microcontroller based on ARM Cortex M3 processor which operates at up
to 100MHz frequency. This microcontroller has 100 pins, which are allowed to manage driving
of six motors easily, and a 12-bit A/D to give feedback on the position of links to the processor.
The processor has also six pins for generating different PWMs that enable motors to drive in
both directions (Korayem et al., 2013).

The main board duty is to compute and apply the algorithms and for driving the motors,
but another board needs to be used. The driver board of motors is an other section of the
setup. BTS7810 having H-bridge design is chosen for driving the motors. This driver is capable
of providing 40A and 48V. Six potentiometers as the feedback are placed on the joints. The
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sensitivity and speed of the response are two important items in this part. The voltage of
each potentiometer separately passes through a low pass filter and after that an ADC channel
converts the voltage to data. The commands are initiated in computers and then are sent to
LPC1768. Next, the error is computed by comparing the position of current angles and desired
ones. Derivative of the error is computed approximately by division of two consecutive data on
the sample time. Then, the control signals are sent to motor drivers to provide the needed power
for DC motors.

6. Simulation and experimental result

6.1. Illustrative example

For the assurance of preference of the ISMC method, in this part of article, we compare this
method with the conventional SMC and use it for the two-link manipulator as an illustrative
example. The schematic of the two-link manipulator is shown in Fig. 7. The parameters of
the two-link manipulator are illustrated in Table 2, and the parameters of conventional SMC
are considered as K1 = K2 = 10 and λ1 = λ2 = 2; and ISMC coefficients are considered as
fb,1 = fb,2 = 250, α1 = α2 = 50, and β = 500, γ1 = γ2 = 10, ε = 0.5 and λ1 = λ2 = 2. Figure 8
shows the end-effector tracking. Figure 9 shows the path error of two methods, and Figs. 10a
and 10b show the correction input of the first and second joint of the two methods that caused
chattering.

Fig. 7. Schematic of the two-link manipulator

Table 2. Parameters of the two link manipulator

l1 l2 lc1 lc2 m1 m2 mp I1 I2

1m 1m 0.5m 0.5m 2 kg 2 kg 0.5 kg 0.166 kgm2 0.166 kgm2

As it is shown in the results, by consideringmp = 0.1 kg as the external disturbance, the main
distinction between conventional and improved SMC could be directed in chattering reduction
topic, which eventually leads to more precision, while less energy is consumed by the actuators.

The point is evident in Figs. 9 and 10; however, to have a clearer view in the matter, Table 3
is arranged for more information in terms of norms of inputs and errors of the system.

6.2. 6R manipulator

In this Section, the results of simulation and experimental tests on the 6R manipulator
are presented. For simulation, the dynamical equation of the robot is generated as differential
equations and solved with MATLAB software. The motor characteristics are given in Table 4.



274 M.H. Korayem et al.

Fig. 8. Trajectories and configuration of the two-link arm

Fig. 9. Error of path tracking of the planar robot

Fig. 10. Correction input of the (a) first link and (b) second link, two-link arm

Table 3. Comparison of errors in inputs and end-effectors between ISMC and SMC of the planar
robot

Methods
Max |u1| Max |u2| Maximum
[N·m] [N·m] error [m]

SMC 127.1296 51.5406 0.0054

ISMC 6.8886 3.3870 0.0023
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Table 4. Specifications of motors of the 6R robot

Motor 1 2 3 4 5 6

us [N·m] 114 98 382.2 40.4 40.4 40.4

ωnl [rad/s] 1.3 1.04 0.73 0.9 0.9 0.9

The torque equation is calculated in a parametric form and programmed in the microcon-
troller to change to the PWM voltage level. The computed voltages are sent to the motors in
real time, and the measured feedback of potentiometers is sent to the main board. This process
continues till the error sets in the allowable bound. Then, the values which are obtained from
the potentiometers are stored in the main PC.

6.2.1. Point-to-point motion

Point-to-point motion starts from point A(0.0533, 0.4585, 0.4033) and ends with point
B(0.5264, 0.07115, 0.5885) during 6 s. The parameters of the SMC controller are given in Table 5
by experiments. Figure 11 shows the end-effector trajectories theoretically and experimental-
ly. In Fig. 12, the variation angles of links are shown. The comparison of simulation results
with experiments show sufficient accuracy. The difference between the actual angles and desired
ones is due to clearances in the gearbox. Figure 13 shows the chattering reduction and smooth-
ness of ISMC as the main controller for the experimental implementation with respect to the
conventional SMC in point-to-point motion.

Fig. 11. ISMC point-to-point motion of the 6R robot via simulation and experiment

Regarding the solid structure and heavy links of the 6R manipulator, the conventional SMC
has only been implemented theoretically. In experiments, the ISMC method has been applied in
the 6R robot to reduce the risk of any defect to motors brought up by probable chattering of
SMC. For the error of the end point in a finite time, the allowable bound is given as δ = 0.02.
By this constraint, DLCC is obtained to be about 920 g.
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Fig. 12. Angle of links in ISMC point-to-point motion of the 6R robot

Fig. 13. Theoretical comparison of SMC and ISMC for actuators of the 6R robot

Table 5. Parameters of the ISMC controller for point-to-point motion of the 6R robot

Joint
λ fb α β γ ε

number

1 10 10 2 10 0.01 0.5

2 10 10 2 10 0.01 0.5

3 10 10 2 10 0.01 0.5

4 10 10 2 10 0.01 0.5

5 10 50 2 10 0.01 0.5

6 10 50 2 10 0.01 0.5
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6.2.2. Trajectory tracking

The trajectory tracking has also been performed in a circular path. Equations of the desired
path are given as follows

xe(t) =
7

9315
t5 −

1

1242
t4 −

5

621
t3 +

5

10
ye(t) = −

14

9315
t5 +

1

621
t4 +

10

621
t3 +

1

10

ze(t) = −
7

9315
t5 +

1

1242
t4 +

5

621
t3 +

6

10

The initial conditions are defined as

x(0) =
[
−0.1 −0.44 0.2 0.65 −1.1 0 01×6

]T

The best parameters for the SMC controller in this path are given in Table 6 through expe-
riments. Figure 14 shows the end-effector trajectory both theoretically and experimentally. In
Fig. 15, the variations of angles of links are shown, and in Fig. 6, angular velocities are shown.

Table 6. Parameters of the ISMC controller for trajectory tracking of the 6R robot

Joint
λ fb α β γ ε

number

1 10 100 2 10 0.01 0.5

2 10 100 2 10 0.01 0.5

3 10 100 2 10 0.01 0.5

4 10 100 2 10 0.01 0.5

5 10 150 2 10 0.01 0.5

6 10 150 2 10 0.01 0.5

Fig. 14. ISMC trajectory tracking of the 6R robot via simulation and experiment

In the trajectory tracking, DLCC is calculated with respect to the limitation of motors and
error path. In Fig. 17, the control inputs are shown. The allowable error is considered 10mm. As
it is shown, the torque of the third motor reaches its lower bound. The DLCC in this trajectory
is obtained to be 700 g.
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Fig. 15. Angle of links in ISMC trajectory tracking of the 6R robot

Fig. 16. Angular velocities of links in ISMC trajectory tracking of the 6R robot

7. Conclusions

In this work, we have designed the improved sliding mode control method for manipulators and
studied the effect of various parameters on the behaviour of the ISMC controller. First, the ISMC
method was simulated for the two-link manipulator for the assurance of good performance and
then was implemented to the 6R manipulator as a good case study. The new hardware of robot
based on LPC1768 ARM microcontroller allowed performing massive calculation of dynamics
and closed loop control of the 6R manipulator. The point-to-point motion and trajectory tracking
problems were compared with experimental results. A good performance for manipulator control
in the presence of modelling the uncertainty and disturbance was confirmed. The main problem
of SMC was the chattering phenomenon, and as a result, the IMSC method provided smooth
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Fig. 17. Control inputs of ISMC trajectory tracking of the 6R robot

input torques for robot motors. Also, the dynamic load carrying capacity for the 6R robot in
point-to-point motion and trajectory tracking was increased by considering the robustness of
the controller.
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