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In this note free vibrations of plate bands with functionally graded properties, resting on an
elastic foundation, are investigated. On the micro-level, these plate bands have a tolerance-
-periodic structure. It can be shown that in dynamic problems of those objects, the effect
of the microstructure size plays a role. This effect can be described in the framework of the
tolerance model, which is presented here for these bands. Obtained results are evaluated
introducing the asymptotic model. Both fundamental and higher free vibration frequencies
of these plate bands are calculated using the Ritz method. The effects of differences of
material plate properties in the cell on the microlevel and of the foundation are shown.
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1. Introduction

In the civil engineering, plates interacting with the subsoil are often used as elements of building
foundations or reinforcements of roads foundations. In many cases, the first approximation of
the subsoil can be a model of Winkler’s foundation.
In this paper, free vibrations of thin functionally graded plate bands with span L (along

the x1-axis) interacting with elastic Winkler’s foundation are considered. It is assumed that
these plate bands have the functionally graded structure along their span on the macrolevel,
but on the microlevel their structure is, so called, tolerance-periodic in x1, i.e. nearly periodic,
cf. Jędrysiak (2010), Jędrysiak and Michalak (2011), Kaźmierczak and Jędrysiak (2010, 2011,
2013). Hence, the plate bands are called thin functionally graded plate bands, cf. Jędrysiak
(2010). The plate material properties are assumed to be independent of the x2-coordinate. The
size of microstructure is determined by length l of “the cell”, being very small compared to the
plate span L. A fragment of the plate band is shown in Fig. 1.

Fig. 1. A fragment of a thin functionally graded plate band interacting with Winkler’s foundation
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Vibrations of such plates are described by a partial differential equation with highly oscilla-
ting, tolerance-periodic, non-continuous coefficients. Because analysis of these plates is too com-
plicated using the equation of the plate theory, different averaged models have been proposed.
These models are usually described by partial differential equations with smooth, slowly-varying
coefficients.
Functionally graded structures can be described by approaches applied to analyse macro-

scopically homogeneous media, e.g. periodic, cf. Suresh and Mortensen (1998). Between these
models it can be mentioned those based on the asymptotic homogenization method for periodic
solids, cf. Bensoussan et al. (1978). Models of such kind for periodic plates can be found in
a series of papers, e.g. Kohn and Vogelius (1984). Other models are based on the microlocal
parameters approach, cf. Matysiak and Nagórko (1989), or the nonstandard homogenization, cf.
Nagórko (1998). However, the effect of the microstructure size on the dynamic plate behaviour
is neglected in the governing equations of those models. Composite plates can be also parts of
more complicated structures such as thin-walled composite columns or beams, cf. Kołakowski
(2009, 2012), Królak et al. (2009), Kubiak (2006). Moreover, nonhomogeneous Winkler’s type
solids can be approximations of foam cores in three layered composite plates, cf. Magnucka-
-Blandzi (2011). Theoretical and numerical results of different problems of functionally graded
structures are presented in many papers. Jha et al. (2013) analysed free vibrations of functio-
nally graded thick plates with shear and normal deformations effects. The static response of
functionally graded plates and shells was investigated using higher order deformation theories
by Oktem et al. (2012). Vibrations of FG-type plates were analysed using a collocation method
with higher-order plate theories by Roque et al. (2007). Free vibrations of shells were presented
by Tornabene et al. (2011). Problems of functionally graded plates resting on a foundation were
also considered, e.g. by Tahouneh and Naei (2014) with using the three-dimensional elasticity
theory by Yajuvindra Kumar and Lal (2012), where vibrations of nonhomogeneous plates with
varying thickness interacting with a foundation were analysed. A list of papers of various the-
oretical and numerical results of thermomechanical problems of functionally graded structures
can be found in Jędrysiak (2010), Woźniak et al. (2008, 2010). Unfotunately, the effect of the
microstructure size is usually neglected in the governing equations of those models.
This effect can be taken into account in the governing equations in the framework of the

tolerance modelling, cf. Woźniak and Wierzbicki (2000), Woźniak et al. (2008, 2010). Various
thermomechanical problems of periodic structures were investigated in a series of papers apply-
ing this method, e.g. dynamics of periodic plane structures by Wierzbicki and Woźniak (2000),
vibrations of medium-thickness plates by Baron (2006), static problems of thin plates with mo-
derately large deflections by Domagalski and Jędrysiak (2012), nonlinear vibrations of beams by
Domagalski and Jędrysiak (2014), vibrations of thin plates resting on an elastic nonhomogene-
ous foundation by Jędrysiak (1999, 2003), vibrations of medium-thickness plates resting on an
elastic foundation by Jędrysiak and Paś (2005, 2014), vibrations with damping of plate strips
with a periodic system of concentrated masses by Marczak and Jędrysiak (2014), vibrations of
wavy-type plates by Michalak (2002), vibrations of thin plates with stiffeners by Nagórko and
Woźniak (2002), vibrations of thin cylindrical shells by Tomczyk (2007, 2013). These papers
show that the effect of the microstructure size plays a crucial role in nonstationary (and some
stationary) problems of periodic structures.
The tolerance modelling method is also applied to similar thermomechanical problems of

functionally graded structures, e.g. Jędrysiak (2010), Woźniak et al. (2010). Some applications to
dynamic and stability problems for thin transversally graded plates with the microstructure size
bigger than the plate thickness were shown by Jędrysiak and Michalak (2011), Kaźmierczak and
Jędrysiak (2010, 2011, 2013, 2014); for thin functionally graded plates with the microstructure
size of an order of the plate thickness by Jędrysiak (2013, 2014), Jędrysiak and Pazera (2014);
for functionally graded skeletonal shells by Michalak (2012); for heat conduction in functionally
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graded hollow cylinders by Ostrowski and Michalak (2011); for thin longitudinally graded plates
by Michalak and Wirowski (2012), Wirowski (2012). An extended list of papers can be found in
the books by Woźniak et al. (2008, 2010).
The main aims of this paper are four. The first of them is to formulate the tolerance and

the asymptotic models of vibrations for thin transversally graded plate bands. The second aim
is to apply these models to calculate free vibration frequencies of a simply supported plate band
interacting with Winkler’s foundation using the Ritz method. The third is to analyse the effect
of various distribution functions of material properties and the effect of the foundation on the
frequencies. The fourth aim is to show the effect of differences in the cell between material
properties (Young’s modulus and mass densities) on the frequencies.

2. Formulation of the problem

Considerations are assumed to be independent of the x2-coordinate. Let us denote x = x1,
z = x3, x ∈ [0, L], z ∈ [−d/2, d/2], with d as a constant plate thickness. The plate band is
described in the interval Λ = (0, L), with “the basic cell” ∆ ≡ [−l/2, l/2] in the interval Λ, where
l is the length of the basic cell, satisfying conditions: d ≪ l ≪ L. By ∆(x) ≡ (x − l/2, x + l/2)
a cell with the centre at x ∈ Λ is denoted. It is assumed that the plate band is made of two
elastic isotropic materials, perfectly bonded across interfaces. The materials are characterised
by Young’s moduli E′, E′′, Poisson’s ratios ν ′, ν ′′ and mass densities ρ′, ρ′′. Similarly, the elastic
foundation is made of two various materials characterised by Winkler’s coefficients k′, k′′. Let
E(x), ∆(x), k(x), x ∈ Λ, be tolerance-periodic, highly-oscillating functions in x, but Poisson’s
ratio ν ≡ ν ′ = ν ′′ constant. Assuming E′ 6= E′′ and/or ρ′ 6= ρ′′, the plate material structure can
be treated as functionally graded in the x-axis direction. Similarly, for k′ 6= k′′, the foundation
structure is functionally graded. Let ∂ denote the derivative with respect to x, and w(x, t) (x ∈ Λ,
t ∈ (t0, t1)) be deflection of the plate band.
Tolerance-periodic functions in x describe the plate band properties – the mass density per

unit area of the midplane µ, the rotational inertia ϑ and the bending stiffness B

µ(x) ≡ dρ(x) ϑ(x) ≡
d3

12
ρ(x) B(x) ≡

d3

12(1 − ν2)
E(x) (2.1)

respectively. Free vibrations of thin functionally graded plate bands, on the well known Kirchhoff
plate theory assumptions, can be described by the partial differential equation of the fourth order
with respect to the deflection w

∂∂[B∂∂w] + µẅ − ∂(ϑ∂ẅ) + kw = 0 (2.2)

with highly-oscillating, non-continuous, tolerance-periodic coefficients.

3. Foundations of the modelling

3.1. Introductory concepts

Following the book edited by Woźniak et al. (2010) and the book by Jędrysiak (2010),
some introductory concepts of the tolerance modelling are used, i.e. the averaging operator,
tolerance system, slowly-varying function SV αξ (Λ,∆), tolerance-periodic function TP

α
ξ (Λ,∆),

highly oscillating function HOαξ (Λ,∆), fluctuation shape function FS
2
ξ (Λ,∆), where ξ is the

tolerance parameter and α is a positive constant determining kind of the function. Some of
these concepts are reminded below.
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A cell at x ∈ Λ∆ is denoted by ∆(x) = x+∆, Λ∆ = {x ∈ ∆ : ∆(x) ⊂ Λ}. The basic concept
of the modelling technique is the averaging operator, for an integrable function f defined by

〈f〉(x) =
1
l

∫

∆(x)

f(y) dy x ∈ Λ∆ y ∈ ∆(x) (3.1)

If f is a function tolerance-periodic in x, its averaged value by (3.1) is slowly-varying in x.
Let h(·) be a highly oscillating function defined on Λ, h ∈ HO2ξ (Λ,∆), continuous together

with the gradient ∂1h and with a piecewise continuous and bounded gradient ∂2h. The function
h(·) is the fluctuation shape function of the 2-nd kind, FS2ξ (Λ,∆), if it depends on l as a
parameter and the condition 〈µh〉(x) ≈ 0 holds for every x ∈ Λ∆, where µ > 0 is a certain
tolerance-periodic function, l is the microstructure parameter.

3.2. Fundamental assumptions

Following the books byWoźniak et al. (2010), Jędrysiak (2010) and applying the introductory
concepts, the following fundamental modelling assumptions can be formulated.
The micro-macro decomposition is the first assumption, in which the deflection w appears

in the form

w(x, t) =W (x, t) + hA(x)V A(x, t) A = 1, . . . , N x ∈ Λ (3.2)

with W (·, t), V A(·, t) ∈ SV 2ξ (Λ,∆) (for every t) as basic kinematic unknowns (W is called the
macrodeflection; V A are called the fluctuation amplitudes) and hA(·) ∈ FS2ξ (Λ,∆) as the known
fluctuation shape functions.
In the tolerance averaging approximation, being the second modelling assumption, the terms

of an order of O(ξ) are treated as negligibly small in the course of modelling.

4. The tolerance modelling procedure

The modelling procedure of the tolerance averaging technique was shown by Woźniak et al.
(2010) and for thin functionally graded plates by Jędrysiak (2010). Below, it is outlined.
The formulation of the action functional is the first step

A(w(·)) =
∫

Λ

t1∫

t0

L(y, ∂∂w(y, t), ∂ẇ(y, t), ẇ(y, t), w(y, t)) dt dy (4.1)

where the lagrangean L is given by

L =
1
2
(µẇẇ + ϑ∂ẇ∂ẇ −B∂∂w∂∂w − kww) (4.2)

From the principle of stationary action to functional (4.1) combined with (4.2), after some
manipulations, known equation (2.2) of free vibrations for thin functionally graded plate bands
interacting with Winkler’s foundation is derived.
The next step of the tolerance modelling is substituting micro-macro decomposition (3.2) into

lagrangean (4.2). Applying averaging operator (3.1) and the tolerance averaging approximation,
the tolerance averaged form 〈Lh〉 of lagrangean (4.2) is obtained in the third step

〈Lh〉 = −
1
2
{(〈B〉∂∂W + 2〈B∂∂hB〉V B)∂∂W + 〈k〉WW + 2W 〈khB〉V B + 〈ϑ〉∂Ẇ∂Ẇ

+ (〈khAhB〉+ 〈B∂∂hA∂∂hB〉)V AV B − 〈µ〉Ẇ Ẇ + (〈ϑ∂hA∂hB〉 − 〈µhAhB〉)V̇ AV̇ B}
(4.3)
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where the macrodeflection W and the fluctuation amplitudes V A, A = 1, . . . , N , are new basic
kinematic unknowns. The known fluctuation shape functions V A are introduced in micro-macro
decomposition (3.2).
Using the principle of stationary action to the averaged functional Ah combined together

with lagrangean (4.3), the system of governing equations is derived.

5. Model equations

From the principle of stationary action applied to the averaged functional Ah with lagrangean
(4.3), after some manipulations, the following system of equations for W and V A is obtained

∂∂(〈B〉∂∂W + 〈B∂∂hB〉V B) + 〈k〉W + 〈khA〉V A + 〈µ〉Ẅ − 〈ϑ〉∂∂Ẅ = 0

〈B∂∂hA〉∂∂W + 〈khA〉W = −(〈B∂∂hA∂∂hB〉+ 〈khAhB〉)V B

− (〈µhAhB〉+ 〈ϑ∂hA∂hB〉)V̈ B
(5.1)

The above equations are a system of N + 1 differential equations constituting the tolerance
model of thin functionally graded plate bands. The underlined terms in these equations depend
on the microstructure parameter l. Hence, this model allows one to take into account the effect
of the microstructure size on free vibrations of these plates. The coefficients of equations (5.1)
are slowly-varying functions in x. It can be observed that boundary conditions for these plate
bands (in Λ = (0, L)) are formulated only for the macrodeflection W (on edges x = 0, L) but
not for the fluctuation amplitudes V A, A = 1, . . . , N .
It can be observed that after neglecting terms with the parameter l in equations (5.1)2, the

algebraic equations for fluctuation amplitudes V A are obtained

V A = −(〈B∂∂hA∂∂hB〉)−1〈B∂∂hB〉∂∂W (5.2)

Substituting formula (5.2) into (5.1)1, the following equation for W is derived

∂∂
(
(〈B〉 − 〈B∂∂hA〉(〈B∂∂hA∂∂hB〉)−1〈B∂∂hB〉)∂∂W

)
+ 〈k〉W + 〈µ〉Ẅ = 0 (5.3)

The above equation together with micro-macro decomposition (3.2) represents the asymp-
totic model of thin functionally graded plate bands. Governing equation (15) with equations
(5.2) of this model can be obtained using also the formal asymptotic modelling procedure, cf.
Woźniak et al. (2010), Kaźmierczak and Jędrysiak (2011, 2013). It can be observed that this
procedure leads to model equations without terms describing the effect of the microstructure
size on free vibrations of these plates. Hence, in the framework of the asymptotic model, the
macrobehaviour of these plate bands can be only investigated.

6. Example: free vibrations of plate bands

6.1. Introduction

Free vibrations of a simply supported thin plate band with span L along the x-axis interacting
with Winkler’s foundation are considered. The properties of the plate band are

ρ(·, z), E(·, z) =

{
ρ′, E′ for z ∈

(
(1− γ(x))l/2, (1 + γ(x))l/2

)

ρ′′, E′′ for z ∈ [0, (1 − γ(x))l/2] ∪ [(1 + γ(x))l/2, l]
(6.1)

with a distribution function of material properties γ(x), see Fig. 2. Moreover, it is assumed that
the foundation is homogeneous with the Winkler’s coefficient k = const .
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Our considerations are restricted only to one fluctuation shape function, i.e. A = N = 1.
Denote h ≡ h1, V ≡ V 1. Hence, micro-macro decomposition (3.2) of the deflection w(x, t) has
the form

w(x, t) =W (x, t) + h(x)V (x, t)

where W (·, t), V (·, t) ∈ SV 2ξ (Λ,∆) for every t ∈ (t0, t1), h(·) ∈ FS
2
ξ (Λ,∆).

Fig. 2. “Basic cell” of the functionally graded plate band interacting with Winkler’s foundation

The cell structure is shown in Fig. 2. Thus, the periodic approximation of the fluctuation
shape function h(x) has the form

h̃(x, z) = Λ2[cos(2πz/l) + c(x)] z ∈ ∆(x) x ∈ Λ

where the parameter c(x) is a slowly-varying function in x and is determined by 〈µ̃h̃〉 = 0

c = c(x) = {sin[πγ̃(x)](ρ′ − ρ′′)}
{
π{ρ′γ̃(x) + ρ′′[1− γ̃(x)]}

}−1

where γ̃(x) is the periodic approximation of the distribution function of the material proper-
ties γ(x). The parameter c(x) is treated as constant in the calculations of derivatives ∂h̃, ∂∂h̃.
Under denotations:

B̆ = 〈B〉 B̂ = 〈B∂∂h〉 B = 〈B∂∂h∂∂h〉 K̆ = 〈k〉

K̃ = l−2〈kh〉 K = l−4〈khh〉 µ̆ = 〈µ〉 µ = l−4〈µhh〉

ϑ̆ = 〈ϑ〉 ϑ = l−2〈ϑ∂h∂h〉

(6.2)

tolerance model equations (5.1) can be written as

∂∂(B̆∂∂W + B̂V ) + K̆W + l2K̃V + µ̆Ẅ − ϑ̆∂∂Ẅ = 0

B̂∂∂W + l2K̃W + (B + l4K)V + l2(l2µ+ ϑ)V̈ = 0
(6.3)

however, plate band equation (5.3) has the form

∂∂[(B̆ − B̂2/B)∂∂W ] + K̆W + µ̆Ẅ − ϑ̆∂∂Ẅ = 0 (6.4)

Equation (6.4) describes free vibrations of this plate band within the asymptotic model. All
coefficients of model equations (6.3) and (6.4) are slowly-varying functions in x.

6.2. The Ritz method applied to the model equations

Equations (6.3) or (6.4) have slowly-varying functional coefficients. Analytical solutions to
them are too difficult to find. Hence, approximate formulas fo free vibrations frequencies can
be derived using the known Ritz method, cf. Kaźmierczak and Jędrysiak (2010). In order to
obtain these formulas, relations of the maximum strain energy Amax and the maximal kinetic
energy Vmax have to be determined.
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Solutions to equation (6.4) and equations (6.3) are assumed in form satisfying the boundary
conditions for the simply supported plate band

W (x, t) = AW sin(αx) cos(ωt) V (x, t) = AV sin(αx) cos(ωt) (6.5)

where α is the wave number, ω is the free vibrations frequency. Introducing denotations

B̆ =
d3

12(1 − ν2)

L∫

0

{E′′[1− γ̃(x)] + γ̃(x)E′}[sin(αx)]2 dx

B̂ =
πd3

3(1 − ν2)
(E′ − E′′)

L∫

0

sin(πγ̃(x))[sin(αx)]2 dx

B =
(πd)3

3(1 − ν2)

L∫

0

{(E′ − E′′)[2πγ̃(x) + sin(2πγ̃(x))] + 2πE′′}[sin(αx)]2 dx

µ̆ = d
L∫

0

{[1− γ̃(x)]ρ′′ + γ̃(x)ρ′}[sin(αx)]2 dx

ϑ̆ =
d3

12

L∫

0

{[1 − γ̃(x)]ρ′′ + γ̃(x)ρ′}[cos(αx)]2 dx

µ =
d

4π

L∫

0

{(ρ′ − ρ′′)[2πγ̃(x) + sin(2πγ̃(x))] + 2πρ′′}[sin(αx)]2 dx

+
d

π
(ρ′ − ρ′′)

L∫

0

c(x)[πc(x)γ̃(x)− 2 sin(πγ̃(x))][sin(αx)]2 dx

+ dρ′′
L∫

0

[c(x)]2[sin(αx)]2 dx

ϑ =
πd3

12

L∫

0

{(ρ′ − ρ′′)[2πγ̃(x)− sin(2πγ̃(x))] + 2πρ′′}[sin(αx)]2 dx

K̆ = k
L∫

0

[sin(αx)]2 dx

K̃ = k
L∫

0

c(x)[sin(αx)]2 dx =
k(ρ′ − ρ′′)
π

L∫

0

sin(πγ̃(x))
ρ′γ̃(x) + ρ′′[1− γ̃(x)]

[sin(αx)]2 dx

K =
1
2
k

L∫

0

c(x)[sin(αx)]2 dx =
k(ρ′ − ρ′′)
2π

L∫

0

sin[πγ̃(x)]
ρ′γ̃(x) + ρ′′[1− γ̃(x)]

[sin(αx)]2 dx

(6.6)

and using (6.5), the formulas of the maximum energies – strain Emax and kinetic Vmax – in the
framework of the tolerance model, take the form

ETMmax =
1
2
[(B̆A2Wα

2 − 2B̂AWAV )α2 + K̆A2W + 2l
2K̃AWAV + (B + l4K)A2V ]

VTMmax =
1
2
[A2W (µ̆+ ϑ̆α

2) +A2V l
2(l2µ+ ϑ)]ω2

(6.7)
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For the asymptotic model, they can be written as

EAMmax =
1
2
[(B̆A2Wα

2− 2B̂AWAV )α2+ K̆A2W +BA
2
V ] VAMmax =

1
2
A2W (µ̆+ ϑ̆α

2)ω2 (6.8)

The conditions of the Ritz method take the form

∂(Emax − Vmax)
∂AW

= 0
∂(Emax − Vmax)

∂AV
= 0 (6.9)

Using (6.9) to relations (6.7), after some manipulations, the following formulas are obtained

(ω−,+)2 ≡
l2(l2µ+ ϑ)(α4B̆ + K̆) + (µ̆+ α2ϑ̆)(B + l4K)

2(µ̆+ α2ϑ̆)l2(l2µ+ ϑ)
(6.10)

∓

√
[l2(l2µ+ ϑ)(α4B̆ + K̆)− (µ̆+ α2ϑ̆)(B + l4K)]2 + 4(l2K̃ − α2B̂)2l2(µ̆+ α2ϑ̆)(l2µ+ ϑ)

2(µ̆+ α2ϑ̆)l2(l2µ+ ϑ)

for the lower ω− and the higher ω+ free vibrations frequencies, respectively, in the framework
of the tolerance model.
For asymptotic model conditions (6.9) applied to equations (6.8) lead, after some manipula-

tions, to the following formula

ω2 ≡ [(α4B̆ + K̆)B − α4B̂2][(µ̆+ ϑ̆α2)B]−1 (6.11)

of the lower free vibration frequency ω.

6.3. Results

Calculations are made for the following distribution functions of the material properties γ(x)

γ̃(x) = sin2
πx

L
γ̃(x) = cos2

πx

L
γ̃(x) =

(x
L

)2

γ̃(x) = sin
πx

L
γ̃(x) =

1
2

(6.12)

where formula (6.12)5 determines an example of a periodic plate band.
Let us also introduce dimensionless frequency parameters for the free vibration frequencies

ω and ω−, ω+ determined by equations (6.11) and (6.10), respectively

Ω2 ≡ 12(1 − ν2)(E′)−1l2ω2 (Ω−)
2 ≡ 12(1 − ν2)(E′)−1l2(ω−)

2

(Ω+)
2 ≡ 12(1 − ν2)(E′)−1l2(ω+)

2
(6.13)

Moreover, a dimensionless parameter of the foundation is introduced

κ ≡ 12(1 − ν2)(E′)−1kd

Results of calculations are shown in Figs. 3-6, where the results obtained by the tolerance or
asymptotic models for plate bands with the simply supported edges are presented. Calculations
are made for Poisson’s ratio ν = 0.3, wave number α = π/L, ratio l/L = 0.1, ratios of plate
thickness d/l = 0.1, 0.01 and ratios of the foundation κ = 5 · 10−5, 0.05. Figures 3 and 4 show
plots of the lower frequency parameters versus both ratios E′′/E′ − ρ′′/ρ′, but Figs. 5 and 6
present diagrams of the higher frequency parameters versus these both ratios. Plots in Figs. 3a,
4a, 5a, 6a are made for κ = 5 · 10−5, but in Figs. 3b, 4b, 5b, 6b for κ = 0.05. Moreover, in
Figs. 3 and 4, a comparison of the lower frequency parameters versus both ratios E′′/E′− ρ′′/ρ′

calculated in the framework of the tolerance model (formulas (6.13)2 and (6.10)1) and of the
asymptotic model (formulas (6.13)1 and (6.11)) is presented. Plots shown in Figs. 3 and 5 are
made for d/l = 0.1, but in Figs. 4 and 6 they are for d/l = 0.01.
From the results shown in Figs. 3-6 some remarks and comments are formulated.
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1◦ The lower frequency parameters calculated by the asymptotic model, (6.11), and the to-
lerance model, (6.10)1, depend on the plate thickness ratio d/l and the parameter of
foundation κ, see Figs. 3 and 4:

• The lower frequency parameters calculated by the asymptotic model, (6.11), and the
tolerance model, (6.10)1, are nearly identical for thicker plates, e.g. d/l = 0.1, and
weaker foundations, e.g. κ = 5 · 10−5, see Fig. 3a.
• However, higher values of these parameters are found from the tolerance model for
smaller thickness of plates, d/l < 0.1, and for stronger foundations, κ > 5 · 10−5, see
Figs. 3b and 4.
• Differences between these frequency parameters depend on the plate thickness ratio
d/l and the parameter of foundation κ. They increase with a decrease in the plate
thickness, d/l > 0, and an increase in the stiffness of foundation, κ > 5 · 10−5, e.g.
d/l = 0.01, κ = 0.05, see Fig. 3b.

2◦ The effect of distribution functions of the material properties γ(x) on the lower frequency
parameters for various ratios E′′/E′ ∈ [0, 1], ρ′′/ρ′ ∈ [0, 1] for the simply supported plate
band can be observed in Figs. 3 and 4:

• The highest values of these frequency parameters are obtained for all pairs of ratios
(E′′/E′, ρ′′/ρ′) from the above intervals of the function γ(x) by (6.12)2 and for smaller
thickness of the plates, d/l < 0.1, or for stronger foundations, cf. κ > 5 · 10−5, see
Figs. 3b and 4.
• The highest values of these frequency parameters for thicker plates, e.g. d/l = 0.1, or
for weaker foundations, e.g. κ = 5 · 10−5, see Fig. 3a, are obtained:
– for γ(x) by (6.12)2 and for pairs of ratios (E′′/E′, ρ′′/ρ′) such that
E′′/E′ > (E′′/E′)0 > 0, ρ′′/ρ′ < (ρ′′/ρ′)0((E′′/E′)0) > 0, where (ρ′′/ρ′)0 de-
pends on (E′′/E′)0,
– for γ(x) by (6.12)4 and for pairs of ratios (E′′/E′, ρ′′/ρ′) such that
E′′/E′ < (E′′/E′)0 > 0, ρ′′/ρ′ > (ρ′′/ρ′)0((E′′/E′)0) > 0, where (ρ′′/ρ′)0 depends
on (E′′/E′)0 (unfortunately, it is not visible in this form of these diagrams)

Fig. 3. Plots of the dimensionless frequency parameters Ω and Ω− of lower free vibration frequencies
versus ratios E′′/E′ − ρ′′/ρ′ by the asymptotic model (surfaces a), the tolerance model (surfaces b),
made for: (a) d/l = 0.1, κ = 5 · 10−5; (b) d/l = 0.1, κ = 0.05 (1 – γ by (6.12)1; 2 – γ by (6.12)2;
3 – γ by (6.12)3; 4 – γ by (6.12)4; 0 – γ by (6.12)5; the grey plane is related to the frequency

parameter for the homogeneous plate band, i.e. E′′/E′ = ρ′′/ρ′ = 1)

• The smallest values of these frequency parameters are obtained for all pairs of ratios
(E′′/E′, ρ′′/ρ′) from the above intervals of the function γ(x) by (6.12)4 and for smaller
thickness of the plates, d/l < 0.1, or for stronger foundations, cf. κ > 5 · 10−5, see
Figs. 3b and 4.
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Fig. 4. Plots of the dimensionless frequency parameters Ω and Ω− of lower free vibration frequencies
versus ratios E′′/E′ − ρ′′/ρ′ by the asymptotic model (surfaces a), the tolerance model (surfaces b),
made for: (a) d/l = 0.01, κ = 5 · 10−5; (b) d/l = 0.01, κ = 0.05 (1 – γ by (6.12)1; 2 – γ by (6.12)2;
3 – γ by (6.12)3; 4 – γ by (6.12)4; 0 – γ by (6.12)5; the grey plane is related to the frequency

parameter for the homogeneous plate band, i.e. E′′/E′ = ρ′′/ρ′ = 1)

• The smallest values of these frequency parameters for thicker plates, e.g. d/l = 0.1,
or for weaker foundations, e.g. κ = 5 · 10−5, see Fig. 3a, are obtained:
– for γ(x) by (6.12)4 and for pairs of ratios (E′′/E′, ρ′′/ρ′) such that
E′′/E′ > (E′′/E′)1 > 0, ρ′′/ρ′ < (ρ′′/ρ′)1((E′′/E′)1) > 0, where (ρ′′/ρ′)1 de-
pends on (E′′/E′)1,
– for γ(x) by (6.12)2 and for pairs of ratios (E′′/E′, ρ′′/ρ′), such that
E′′/E′ > (E′′/E′)2 > 0, ρ′′/ρ′ > (ρ′′/ρ′)2((E′′/E′)2) > 0, where (ρ′′/ρ′)2 de-
pends on (E′′/E′)2 (unfortunately, it is not visible in this form of diagrams),
– for γ(x) by (6.12)3 and for pairs of ratios (E′′/E′, ρ′′/ρ′), such that (E′′/E′)2 >
E′′/E′ < (E′′/E′)3 > 0, (ρ′′/ρ′)2((E′′/E′)2) > ρ′′/ρ′ > (ρ′′/ρ′)3((E′′/E′)3) > 0,
where (ρ′′/ρ′)2, (ρ′′/ρ′)3 depend on (E′′/E′)2, (E′′/E′)3, respectively (not visible
in this form of diagrams),
– for γ(x) by (6.12)5 (periodic plate band) and for pairs of ratios (E′′/E′, ρ′′/ρ′),
such that (E′′/E′)1 > E′′/E′ > (E′′/E′)3 > 0, (ρ′′/ρ′)1((E′′/E′)1) < ρ′′/ρ′ <
(ρ′′/ρ′)3((E′′/E′)3) > 0, where (ρ′′/ρ′)1, (ρ′′/ρ′)3 depend on (E′′/E′)1, (E′′/E′)3,
respectively (not visible in this form of diagrams).

3◦ Figure 3 shows also an interesting feature that for the distribution functions of the material
properties γ(x) used and for rather thicker plates, e.g. d/l = 0.1, and weaker foundations,
e.g. κ = 5 ·10−5, the lower frequency parameters are higher or smaller than this parameter
for the homogeneous plate band made of a stronger material, i.e. ρ′′/ρ′ = E′′/E′ = 1 (the
grey plane in Fig. 3a).

4◦ The effect of distribution functions of the material properties γ(x) on higher frequency
parameters for various ratios E′′/E′ ∈ [0, 1], ρ′′/ρ′ ∈ [0, 1] for the simply supported plate
band can be observed in Figs. 5 and 6:

• The highest values of these frequency parameters for rather very thin plates, e.g.
d/l=0.01, and for stronger foundations, e.g. κ = 0.05, see Fig. 6a, are obtained:
– for γ(x) by (6.12)3 and for pairs of ratios (E′′/E′, ρ′′/ρ′) such that
E′′/E′ > (E′′/E′)0 > 0, ρ′′/ρ′ < (ρ′′/ρ′)0((E′′/E′)0) > 0, where (ρ′′/ρ′)0 de-
pends on (E′′/E′)0,
– for γ(x) by (6.12)2 and for pairs of ratios (E′′/E′, ρ′′/ρ′) such that
E′′/E′ < (E′′/E′)0 > 0, ρ′′/ρ′ > (ρ′′/ρ′)0((E′′/E′)0) > 0, where (ρ′′/ρ′)0 de-
pends on (E′′/E′)0.
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Fig. 5. Plots of the dimensionless frequency parameters Ω+ of higher free vibration frequencies versus
ratios E′′/E′ − ρ′′/ρ′, made for: (a) d/l = 0.1, κ = 5 · 10−5; (b) d/l = 0.1, κ = 0.05
(1 – γ by (6.12)1; 2 – γ by (6.12)2; 3 – γ by (6.12)3; 4 – γ by (6.12)4; 0 – γ by (6.12)5)

Fig. 6. Plots of the dimensionless frequency parameters Ω+ of higher free vibration frequencies versus
ratios E′′/E′ − ρ′′/ρ′, made for: (a) d/l = 0.01, κ = 5 · 10−5; (b) d/l = 0.01, κ = 0.05
(1 – γ by (6.12)1; 2 – γ by (6.12)2; 3 – γ by (6.12)3; 4 – γ by (6.12)4; 0 – γ by (6.12)5)

• The highest values of these frequency parameters for thicker plates, e.g. d/l > 0.01,
and for weaker foundations, e.g. κ ¬ 0.05, see Figs. 5 and 6a, are obtained:
– for γ(x) by (6.12)4 and for pairs of ratios (E′′/E′, ρ′′/ρ′) such that
E′′/E′ < (E′′/E′)0 > 0, ρ′′/ρ′ > (ρ′′/ρ′)0((E′′/E′)0) > 0, where (ρ′′/ρ′)0 de-
pends on (E′′/E′)0,
– for γ(x) by (6.12)5 (periodic plate band) and for pairs of ratios (E′′/E′, ρ′′/ρ′)
such that (E′′/E′)1 > E′′/E′ > (E′′/E′)0 > 0, (ρ′′/ρ′)1((E′′/E′)1) < ρ′′/ρ′ <
(ρ′′/ρ′)0((E′′/E′)0) > 0, where (ρ′′/ρ′)0, (ρ′′/ρ′)1 depend on (E′′/E′)0, (E′′/E′)1,
respectively,
– for γ(x) by (6.12)2 and for pairs of ratios (E′′/E′, ρ′′/ρ′) such that
E′′/E′ > (E′′/E′)1 > 0, (ρ′′/ρ′)2((E′′/E′)2) < ρ′′/ρ′ < (ρ′′/ρ′)1((E′′/E′)1) > 0,
where (ρ′′/ρ′)1, (ρ′′/ρ′)2 depend on (E′′/E′)1, (E′′/E′)2, respectively,
– for γ(x) by (6.12)3 and for pairs of ratios (E′′/E′, ρ′′/ρ′) such that
(E′′/E′)2 > E′′/E′ > (E′′/E′)1 > 0, (ρ′′/ρ′)2((E′′/E′)2) > ρ′′/ρ′ <
(ρ′′/ρ′)1((E′′/E′)1) > 0, where (ρ′′/ρ′)1, (ρ′′/ρ′)2 depend on (E′′/E′)1, (E′′/E′)2,
respectively.

• The smallest values of the higher frequency parameters for rather very thin plates,
e.g. d/l = 0.01, and for stronger foundations, e.g. κ = 0.05, see Fig. 6b, are obtained
for γ(x) by (6.12)4 and for all pairs of ratios (E′′/E′, ρ′′/ρ′).
• The smallest values of these frequency parameters for thicker plates, e.g. d/l > 0.01,
and for weaker foundations, e.g. κ ¬ 0.05, see Figs. 5 and 6a, are obtained:
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– for γ(x) by (6.12)3 and for all pairs of ratios (E′′/E′, ρ′′/ρ′) such that
E′′/E′ > (E′′/E′)3 > 0, ρ′′/ρ′ < (ρ′′/ρ′)3((E′′/E′)3) > 0, where (ρ′′/ρ′)3 de-
pends on (E′′/E′)3,
– for γ(x) by (6.12)2 and for pairs of ratios (E′′/E′, ρ′′/ρ′) such that
E′′/E′ < (E′′/E′)3 > 0, ρ′′/ρ′ > (ρ′′/ρ′)3((E′′/E′)3) > 0, where (ρ′′/ρ′)3 de-
pends on (E′′/E′)3.

7. Remarks

Using the tolerance modelling to the known differential equation of thin plates resting on Win-
kler’s foundation, the averaged tolerance model equations of functionally graded plate bands are
obtained. From the differential equation with non-continuous, tolerance-periodic coefficients, a
system of differential equations with slowly-varying coefficients is derived. It should be noted
that the tolerance model equations have terms dependent on the microstructure parameter l,
and describe the effect of the microstructure size on the behaviour of these plates. However, the
asymptotic model equation neglects this effect.
Free vibration frequencies of the simply supported plate band have been analysed in the

example for various distribution functions of the material properties γ(x), different ratios of
material properties E′′/E′, ρ′′/ρ′ and of the plate thickness d/l as well as various parameters of
foundation κ.
Analysing results of this example, it can be observed that:
1◦ Using both the presented models – the tolerance and the asymptotic one, lower free vibra-
tions frequencies can be analysed.

2◦ Lower and higher free vibrations frequencies decrease with an increase in the ratio ρ′′/ρ′,
but they increase with the increasing ratio E′′/E′.

3◦ The asymptotic model cannot be applied to analyse lower free vibrations frequencies of
rather very thin plates (with the ratio d/l = 0.01) and rather strong foundations (with the
foundation parameter κ = 0.05), see Fig. 4b.

4◦ For thicker plates (e.g. d/l = 0.1) and weaker foundations (κ = 5 · 10−5), microstructured
plates can be made applying different distribution functions of the material properties γ(x)
such that their lower fundamental free vibrations frequencies are smaller or higher than
these frequencies for the homogeneous plate made of a stronger material (plates with the
ratios E′′/E′ = ρ′′/ρ′ = 1) for different pairs of the ratios (E′′/E′, ρ′′/ρ′).

Hence, the tolerance model can be used as a certain tool to analyse various vibration problems
of thin functionally graded plates under consideration, for instance – higher order vibrations
related to the microstructure of the plates. Other dynamic problems of such plates will be
shown in forthcoming papers.
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