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This article presents an analysis of a flexible Jeffcott rotor with an active bearing support.
The rotor is coupled with lateral and torsional vibrations and a force from the unbalance
vector derived from the Lagrangian method. The active support bearing is controlled by
FOPID controller. Changing the rotor vibration is followed by shifting rotor angular speed
and achieving the natural frequency. Simulation results demonstrate torsional and lateral
vibration of thr rotor at the rotating speed near the natural frequency. Consequently, control-
ling the lateral vibrations mitigates potential damage and improves safety. FOPID controller
introduces a new approach to vibration control of a rotating machine.
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1. Introduction

Application of rotors in modern turbomachinery, particularly in the power generation industry,
requires continuous diagnosis and control. Although many studies have been conducted dealing
with control of vibration in rotating shafts, there is still no ideal method allowing one to eliminate
too high vibration of the machines. Observing rotors vibration during operation with different
rotating speeds, allows implementation of various lateral damping on bearings depending on
the necessity. Consequently, the control of lateral vibrations mitigates potential damage and
improves safety.
Two dynamic systems influence each other when they are coupled. Dynamic lateral and

torsional rotor vibrations can be considered separately. This approach is permitted if the effect
of coupling is weak (Gosiewski, 2008b; Gosiewski and Muszyńska, 1992; Sawicki et al., 2004).

Fig. 1. Section of the rotor in inertial and rotating coordinates
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The system is coupled by the unbalance vector in the model of the rotor (Fig. 1). If the
rotor is considered as a weakly damped system it has a range of unstable speeds. The speed
ranges are unstable when the poles in diagram of both dynamic systems are crossing each other
(Gosiewski and Muszyńska, 1992). This article presents phenomena of vibration in classical
dynamical systems (Gosiewski and Muszyńska, 1992) and a relationship for the stability of
rotor machinery and vibration control in a closed loop when the rotor speed is in the stable
and unstable range. For several decades, control applications in industrial processes have been
dominated by the PID controller. Its wide popularity results from the simplicity of design
and good performance including low overshoot and small settling time for slow process plants
(Astrom and Hagglund, 1995; Biswas et al., 2009). Fast changing process plants require a more
sophisticated approach – in several research groups, a fractional order calculus has been proposed
(Merrikh-Bayat, 2012). Podlubny (1999) proposed a concept of fractional order controllers and
demonstrated the effectiveness of such controllers for actuating the responses of fractional order
systems. The transfer function of the fractional order PIλDµ (FOPID) controller is given by
Podlubny (1999) as

Gc(s) = KP +KIs
−λ +KDs

µ (1.1)

where KP is the proportional gain, KI is the integration gain, KD is the differentiation gain,
λ is the order of integrator, µ is the order of differentiator.

2. Rotor mathematical model

The mathematical model, called the Jeffcott rotor (Ma et al., 2013), is described as a flexible
rotor consisting of a centrally located unbalanced disk attached to a weightless shaft mounted
symmetrically on rigid bearings (Gan et al., 2014; Gosiewski, 2008a,b; Gosiewski and Muszyńska,
1992). The stiffness of the shaft is anisotropic (asymmetric) and the damping due to the air
resistance effect is assumed to be viscous. The angular position of the unbalanced vector ε can
be used as an indicator and is given by: θ(t) = ωt + ψ(t) + β, where ω is constant rotating
speed of the shaft, ψ(t) is torsional angle, β is the angle between the unbalanced vector and the
ξ axis. Kinetic and potential energy of the rotor system exhibiting coupling lateral and torsional
vibrations can be expressed by the following equations (Sawicki et al., 2004)

T =
m

2
(x2s + y

2
s) +

IO
2
θ̇ U =

1

2
[ξ η]KI

[

ξ
η

]

+
KT

2
ψ2 −mgh (2.1)

where KI is the shaft stiffness defined by the matrix (Eq. (2.2)) in inertial coordinates for the
undisturbed rotor by geometry or influence of the uncracked stiffness Kxy = Kyx ≡ 0. In the
case of an unbalanced (anisotropic) rotor, the stiffnesses along the ξ, η directions are not equal
(Kxx 6= Kyy). xs = x − ε cos(ωt + β) and ys = x + ε sin(ωt + β) are the coordinates of the
centre of mass of the disk in the inertial coordinate system XY Z, ξ = x cos(ωt) + y sin(ωt) and
η = −x sin(ωt)+y cos(ωt) are the coordinates of the geometric centre of the rotor in the rotating
coordinate system ξηζ following Φ with rotating speed

KI =

[

Kxx Kxy

Kyx Kyy

]

(2.2)

The Rayleigh dissipation function (Lalanne et al., 1998) in lateral vibrations consists of two
components. One of these components defines energy dissipation caused by internal dumping,



Control of anisotropic rotor vibration using fractional order controller 1015

the second one describes damping proportional to rotational speed of the rotor in the inertial
coordinate system

Er =
1

2
CE(ẋ

2 + ẏ2) +
1

2
CL(ξ̇

2 + η̇2) + CTψ
2 (2.3)

Using the Euler-Lagrange method, the equations of kinetic and potential energy balance (Eq.
(2.1)), the Rayleigh dissipation function (Eq. (2.3)) and the non-linear equations of motion for
lateral and torsional vibrations of the rotor system (Eqs. (2.4)) are determined

ẍ− ε[θ̇2 cos(θ + β) + θ̈ sin(θ + β)] + Kxx

m
(x cos2 θ + y sin θ cos θ)

+
Kyy

m
(x sin2 θ − y sin θ cos θ) + CE

m
ẋ+

CL
m
(ẋ+ ωy) = 0

ÿ − ε[θ̈ cos(θ + β)− θ̈2 sin(θ + β)] + Kxx

m
(ysin2θ + x sin θ cos θ)

+
Kyy

m
(y cos2 θ − x sin θ cos θ)− g + CE

m
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m
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− Kxx −Kyy

m
xy cos 2θ

]

+
KT

IO
(θ + ωt) +

2KT

IO
(θ̇ − ω) = 0

(2.4)

The next step of modelling is the transition for the non-linear equations of motion in the
fixed coordinates to the fixed complex coordinates by specifying the concurrent and backward
movement (Eq. (2.5)). Conversion to complex coordinates allows linearisation of the system
through coefficients

u = x+ jy u = x− jy (2.5)

Thus, having the system of equations of motion in the complex inertial coordinates, it can be
linearised assuming that the angle of torsion θ = ωt+ψ is close to the angle of rotation Φ = ωt,
where ψ is a relatively small angular displacement describing torsional vibration of the shaft. A
linearised Taylor series (Eqs. (2.6)) is used. In this step, the first expressions of decomposition
of the exponential function in Eq. (2.6)1 is taken. The non-linear elements have been skipped
(Gosiewski and Muszyńska, 1992). As a result of this procedure, we obtain linearised equations
of motion in the complex inertial coordinates, and using formulas (Eqs. (2.6)2−5), equations in
the real rotating coordinates are obtained

e±jψ = 1± jψ + . . . u = wejωt u = we−jωt

w = ξ + jη w = ξ − jη
(2.6)

Then the rotor model is determined by

ξ̈ = 2ωη̇ + ω2ξ − CE
m
(ξ̇ − ωη)− CL

m
ξ̇ − Kxx

m
ξ − εω2ψ sinβ + 2εωψ̇ cos β

+ εψ̈ sin β + εω2 cos β + g sin(ωt)

η̈ = −2ωξ̇ + ω2η − CE
m
(η̇ − ωξ)− CL

m
η̇ − Kyy

m
η − εω2ψ cos β + 2εωψ̇ sin β

+ εψ̈ cos β + εω2 sin β + g cos(ωt)

ψ̈ = −CT
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− mε2

IO
ω2ψ − KT

IO
ψ − ε
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ε

IO
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mε

IO
g cos(ωt+ β)

(2.7)
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The coefficients of the rotor dynamic equation obtained in this way are time dependent,
which means that vibration of the rotor can be considered as parametric vibration. It is known
that vibrations of machines are unstable in a range of parameters. One of the rotor parameter
is the angular speed, which is changing while working. For the purpose of solving the eigenvalue
problem, free lateral and torsional vibration of the rotor should be determined. Free vibrations
are deprived of external excitations and are defined by the following equations

ξ̈ = 2ωη̇ + ω2ξ − CE
m
(ξ̇ − ωη)− CL

m
ξ̇ − Kxx

m
ξ − εω2ψ sinβ

+ 2εωψ̇ cos β + εψ̈ sinβ

η̈ = −2ωξ̇ + ω2η − CE
m
(η̇ − ωξ)− CL

m
η̇ − Kyy

m
η − εω2ψ cos β

+ 2εωψ̇ sin β + εψ̈ cosβ

ψ̈ = −CT
IO
− mε2

IO
ω2ψ − KT

IO
ψ − ε

IO
Kyyξ sinβ +

ε

IO
Kxxη cos β

(2.8)

Using the Laplace transformation, differential equations (2.8) take the form of coupled equ-
ations with the complex variable s = −jω

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where

A1d(s) = s
2 +
1

m
(CE + CL)s+
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IO
sin β K(s) = Kxx

ε

IO
cos β

(2.10)

The determinant of the main matrix in equation (Eq. (2.9)) is the characteristic polynomial
of the rotor model. Comparing this characteristic polynomial to zero, poles of the system are
obtained.

Using such a characteristic equation, stability of the system can be determined. When the
system is stable, all elements (poles) of the characteristic equation have negative real parts.
Checking the roots of the characteristic equation in the rotational speed of the rotor ω characte-
ristic shows that the speed of the rotor is stable. The rotor parameters are chosen to correspond
to real machines (Sawicki et al., 2004). The map in Fig. 2 shows the course of the poles de-
pending on the rotating speed. Unstable rotating speed occurs when the poles change the sign
in the real part. Furthermore, unstable rotating speed occurs when the imaginary part of the
trajectories intersect (Gosiewski, 2008a,b). The first area corresponds to the natural frequency

ω1 ∼= (
√

Kxx/m +
√

Kyy/m)/2, the second ω2 ∼=
√

KT /IO − (
√

Kxx/m+
√

Kyy/m)/2 and the

third ω3 ∼=
√

KT /IO + (
√

Kxx/m+
√

Kyy/m)/2.

Real parameters listed in Table 1 are chosen for the model in order to emphasize the impor-
tance of examining real life applications.
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Fig. 2. Distribution poles in the rotation frequency

Table 1. Simulation parameters (Sawicki et al., 2004)

Physical parameters Value Units

Disk mass m 20 kg

Disk polar moment of inertia IO 0.3 kg/m2

Shaft stiffness Kxx 8.82 · 105 N/m

Shaft stiffness Kyy 8.42 · 105 N/m

Torsional shaft stiffness KT 9.00 · 105 N/m

Range of stiffness ∆K 10%

Unbalance eccentricity ε 1.5 · 10−3 m

Unbalance phase angle β 30 degrees

Lateral damping ratio CL 0.01 –

External damping ratio CE 0.01 –

Torsional damping ratio CT 0.001 –

3. Realization of the fractional order controller

There are many methods of finding integer or discrete transfer functions which approximate a
fractional derivative. For example, Merrikh-Bayat (2011) approximated the transfer function of
controller with an integer order transfer function. Valsa and Brancik (1998) used the inverse
Laplace transformations, and more methods can be found in Vinagre et al. (2000)

The Oustaloup Recursive Approximation (ORA) is widely used in finding a rational integer-
-order approximation for fractional-order integrators and differentiators of the form sr, where
r ∈ (−1, 1) and is defined by Eq. (3.1) (Merrikh, 2012; Oustaloup et al., 2000; Vinagre et al.,
2000)

sr ≈ k
N
∏

n=1

1 + s
ωz,n

1 + s
ωp,n

(3.1)
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where Eq. (3.1) is determined by Eqs. (3.2)

ωz,1 = ωl
√
η ωp,n = ωz,nα n = 1, . . . , N

ωz,n+1 = ωp,nη, n = 1, . . . , N − 1 α =
(ωh
ωl

)

r
N

η =
(ωh
ωl

)

1−r
N

(3.2)

where N is the number of poles and zeros, ωh is high transitional frequency, ωl is low frequency,
ωu is the unit gain frequency and the central values of a band of frequencies geometrically
distributed around it and defined by ωu =

√
ωlωh. The Oustaloup-Recursive-Approximation for

a fractional order differentiator enable one to obtain the transfer function of an integral element
of the order of 1/2 (Xue et al., 2001). The following variables should be given: r – fractional
order as in sr, where r is a real number, N – order of the finite transfer function approximation
for both (num/den), ωl – low frequency limit of the range of frequency of interest, ωh – upper
frequency limit of the range of frequency of interest. The frequencies ωl and ωh should be selected
before approximation of the integer element of the fractional PIλD controller. If the frequency
of the input signal is in a different range than ωl and ωh, the fractional PI

λD controller will not
be able to work properly – the integer part of the controller will not act like a integer.
In further simulation, λ = 1/2, ωl = 3 · 104Hz, ωh = 2 · 10−4Hz and N = 1, 5, 11 are

considered.
Figure 3 shows a comparison of a fractional order with the classical order in the Bode

characteristic. As it can be seen, the 11-th approximation of the integrator element gives a
sufficient result for the factor in the integrator description and gives similar results for the
phase characteristic to the classical order. According to the range of frequencies, the systems
have different quality of control. If the order of approximation increases, the ripple of phases
decreases.

Fig. 3. Comparison of the fractional order with the classical order in the Bode characteristic

In Fig. 4, a comparison of the poles-zeros plot of different approximations of the fractional
integer with the classical integer are shown. From this characteristic, several numbers of poles
and zeros of the systems have been received. All systems are within stability boundary and do
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not have imaginary parts. With increasing approximation, the zeros and poles move closer to
the area of stability.

Fig. 4. Comparison of the fractional order with the classical order in poles-zeros map

Figure 5 shows the step response of a different number of approximations of the integrator
used in the fractional order controller. The comparison shows that the system with a lower
number of approximations achieves faster the set point.

Fig. 5. Comparison of the fractional order with the classical order on the step response

In the low range of frequencies the integral element behave like a proportional element, in the
higher range like an object with damped signals. This leads to non-linear action of the integral
element which can precipitate internal signal saturation for long prevalence of a fixed offset value
and “low pass filter” in the case of a large dynamic offset.

4. Open-loop and closed-loop system

Free vibration at a stable speed (30Hz), close to the first unstable speed, is shown in Fig. 6.
Vibration along the axis η and ξ have similar amplitudes and are shifted in phase by π/2 rad in
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which the controller can work with information about the value ξ. Vibration of ψ depends on η
and ξ, so if η and ξ are minimized then, vibration of ψ is also minimized.

Fig. 6. Free vibration of the rotor, (a) vibration of ξ, (b) vibration of η, (c) vibration of ψ

The classical PID controller and fractional PIλD controller have been designed for stable
rotation speed ω = 30Hz. The rotating speed ω = 30Hz has been selected as a stable speed
by the characteristic shown in Fig. 2. This vibrations have the amplitude in constant value
(not increasing). Vibrations in the ξ, η axes have similar amplitudes and differ by a phase shift
π/2 rad from each other. The controller measuring the amplitude of vibration in the ξ axis does
not need the information in the η axis because of the similarity. Vibrations in the ψ axis are
coupled with vibrations in the ξ and η axes by the stiffness matrix (Eq. (2.4)). Minimising the
vibrations in the ξ and η vertical axis decreases the vibrations of the ξ and η directions.

The concept of realization of the rotor vibration controller consists in measuring the amplitu-
de of vibration in the ξ axis and varying the stiffness of the active supports within the range ∆K
(Fig. 7). The controller changes the transverse stiffness of the system by adding to the initial
stiffness Kxx, and Kyy by adding the processing stiffness ∆K. The final value of stiffness is
∆Kxx = ∆Kyy = Kxx +∆K = Kyy +∆K (Fig. 7).

The controller settings for the rotating speed ω = 30Hz are shown in Table 2. The first
case is tuned for the PIλD controller, the second one for a classical PID controller. As the two
elements of the controller do not differ in structure and the integral component I acts similarly
in both cases, the responses of the controls have been tested for the same two settings.

Simulations have been carried for two stable rotating speeds (30Hz, 36Hz) and one unstable
rotating speed (32Hz). The results are shown in Figs. 8-10 and in Table 3.

Simulations of rotor vibrations have been carried out at a constant rotating speed. Simula-
tions present only vibration in the ξ axis. All results of the simulstion are presented in Table 3.
To present stable vibrations of the rotor, the operation of the controller has been started at the
second second of simulation. In the first simulation at the rotating speed ω = 30Hz the con-
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Fig. 7. Close loop system

Table 2. Controller settings

Settings First case Second case Units

kp 1.4139 · 103 2.5194 · 103 –

Ti 14.9496 7.8666 s

kd 8 8 –

Td 1.69787 3.8445 s

Fig. 8. Comparison of controllers at the rotating speed 30Hz. Vibration in the ξ direction with
controllers with first settings (a) and with second settings (b)

trollers have first settings (Table 2). The settling time in the system with the fractional order
controller is shorter than in the classical PID controller (Fig. 9). The response of the system
with PIλD controllers for all order approximations has close settling time. The amplitude of
settling vibrations in the system with FOPID controllers is lower than in the system with the
classical PID controller.

In the next simulation, the second set of settings of the controllers (Table 2) with the same
rotor rotating speed (ω = 30Hz) has been used. The FOPID controllers are still better than
the classical PID controller. The systems with the FOPID controllers have a shorter settling
time and lower amplitudes of vibrations.

Next simulations present control vibration at an unstable rotating speed (ω = 32Hz) (Fig. 9).
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Fig. 9. Comparison of controllers at the rotating speed 32Hz. Vibration in the ξ direction with
controllers with first settings (a) and with second settings (b)

Fig. 10. Comparison of controllers at the rotating speed 36Hz. Vibration in the ξ direction with
controllers with first settings (a) and with second settings (b)

Because the amplitude of vibration goes to infinity, the controllers have been started at the
beginning of simulation. The systems with the classical PID controllers are characterized by
a better stablisation process. Simulations for systems with different order of approximations
of PIλD present various amplitudes for settling vibrations, but the settling times are constant.
With an increase in the order of the approximation, the amplitudes of settling vibrations decrease
for all settings of the controller. The systems with classical PID controllers have longer settling
times but achieve a lower amplitude of settling vibrations.

In the next part of the numerical research, the response of the close loop systems with
controllers have been tested at a stable speed 36Hz (Fig. 10). This is intended to test how the
settings and types of the controllers are resistant to a change in the rotating speed. In both
cases, overshoot is observable, but in the classical controller the overshoot has a smaller value
than in the fractional order controller. The vibrations in steady states of the system with the
fractional order controller reach smaller values.
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Table 3. Comparison of the simulations results

Controller Settings
Order of Rotating Settling Settling

of approximation speed [Hz] time [s] vibration [m]

PID

First case 30 18 9 · 10−4
32 19 5.6 · 10−3
36 10 6.4 · 10−4

Second case 30 12 5.6 · 10−4
32 14 4.1 · 10−3
36 4 6.1 · 10−4

First case 1-st, 5-th, 11-th 30 4 4.6 · 10−4
1-st, 5-th 32 12 1.06 · 10−2
11-th 32 12 1 · 10−2

1-st, 5-th, 11-th 36 4.5 6.8 · 10−4
PIλD Second case 1-st, 5-th, 11-th 30 3 5.2 · 10−4

1-st 32 10 1.39 · 10−2
5-th 32 10 1.37 · 10−2
11-th 32 10 1.3 · 10−2

1-st, 5-th, 11-th 36 6.5 6.7 · 10−4

5. Conclusion

Taking into account the coupling between torsional and bending vibrations for the Jeffcott model,
an analytical solution has been developed. The inclusion of Eq. (2.7)3 for torsional vibration is
used to achieve this result. Numerical simulations of the anisotropic rotor are carried out by
applying an unbalance excitation, gravity forces and a torsional excitation. The torsional and
lateral vibrations and the settling time are compared by using a different approach to control
theory. The classical controller and the fractional order controller are used in the closed loop
system. The investigations have been carried out on the effects of the type of controllers on
rotor vibration and revealed that PID controllers are more efficient around the point in which
they are tuned and have lower resistance to changes in the speed of rotation. For unstable
vibrations, better results give systems with the classical PID controller. The authors concluded
that a good approach to controlling vibration of the rotor at a stable speed is to build a system
with switching parameters of the FOPID controller relative to the rotational speed. A real life
problem may be still the proper choice of actuators corresponding to the reaction to changes
in the stiffness control signal of the rotor and, more specifically, in its bearing. However, the
proposed concept of a new method of control for an anisotropic rotor using a fractional order
controller requires experimental confirmation, which is underway.
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