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This paper aims at planning an optimal point to point path for a flexible manipulator under
large deformation. For this purpose, the researchers use a direct method and meta-heuristic
optimization process. In this paper, the maximum load carried by the manipulator and the
minimum transmission time are taken as objective functions of the optimization process to
get optimal path profiles. Kinematic constraints, the maximum velocity and acceleration,
the dynamic constraint of the maximum torque applied to the arms and also the constraint
of final point accuracy are discussed. For the optimization process, the Harmony Search (HS)
method is used. To evaluate the effectiveness of the approach proposed, simulation studies
are reviewed by considering a two-link flexible manipulator with the fixed base. The findings
indicate that the proposed method is in power of dealing with nonlinear dynamics of the
system. Furthermore, the results obtained by rigid, small and large deformation models are
compared with each other.

Keywords: meta-heuristic optimization, harmony search, large deformation, flexible mani-
pulator

1. Introduction

In order to increase the efficiency and economy of manipulators, finding an optimal trajectory
by maximum dynamic load capacity and minimum transmission time between two points is of
particular and high importance. When planning a point to point path, there are many comple-
xities, so different methods should be used to solve the problem. All used methods are a subset
of two main methods, namely direct and indirect methods. In general, the indirect methods are
based on the optimal control theory and the minimum principle of Pontryagin. The planning
of a two-link rigid manipulator is done via using the optimal control by Korayem et al. (2009).
To calculate Dynamic Load Carrying Capacity (DLCC) in a manipulator, the optimal control
method is studied through considering complete dynamics of the system and nonlinear terms.
Boundary conditions are exactly satisfied and the optimization problem is numerically solved
with sufficient accuracy. Korayem and Nikoobin (2009) studied the optimal path planning for
rigid and fixed-base two-link manipulators with the help of the optimal control method. By
using Pontryagin optimality conditions, the determination of the maximum load capacity will
be changed to the standard two-point boundary value problem (Korayem and Nikoobin, 2009).
Korayem et al. (2011) planned an optimal path for a two-link mobile manipulator by using the
indirect method. They proved that the implementation of the optimal control considering full
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nonlinear dynamics of the system caused by Hamiltonian gradient calculation, the existence of
a two-point boundary value problem and the use of a multiple shooting numerical method are
not so easy.

In all activities mentioned using the indirect methods and the optimal control theory to plan
the optimal path, there are the following limitations. Path planning by the optimal control needs
nonlinear numerical techniques such as multiple shooting methods. These techniques require
a good initial guess and are sensitive to it. These methods also require an analytical form
of the Hamiltonian gradient and an optimum value of state variables obtained by using the
Hamiltonian gradient. In these methods, the state variables are used to solve the problem that
in the general case (especially by considering the flexibility) it is very difficult to estimate them.
Furthermore, precise determination of weight functions for different objective functions will make
some problems in the implementation of the methods presented. To resolve the defects, direct
approaches are recommended to plan the path. Direct methods are based on discretization of
dynamic variables of the system (state variables and control variables) in which ultimately, to
provide the parameters, the problem of planning a path will result in a parametric optimization
problem. In these methods, the profile of joints motion is represented directly by polynomial,
Spline and B-spline functions. By the profile of joints motion, the path planning will be changed
to the optimization problem to determine the optimality of profile constant coefficients. To
solve the optimization problem, meta-heuristic approaches speeding up the convergence and
decreasing the sensitivity to the initial guess can be used. To implement these methods, there
is no requirement for linearization and simplification of dynamic equations of the system, and
so complete dynamics of the system can be considered.

When planning a trajectory, different functions are considered as objective functions in opti-
mization. The most important ones are the minimum transmission time (Haddad et al., 2005),
minimum energy consumption (Spangelo and Egeland, 1992) and minimum jerk in joints (Piazzi
and Visioli, 2000). Different methods are developed to study the path planning by the direct
method presented such as Genetic Algorithm method (GA) (Garg and Kumar, 2002; Saravanan
and Ramabalan, 2008; Saravanan et al., 2008), Simulated Annealing (SA), Sequential Weight
Increasing Factor Technique (SWIFT) and Sequential Quadratic Programming (SQP) method
(Chettibi et al., 2004). In (Chettibi et al., 2004), SQP method is used to plan the path. It is
clear that SQP may get a local optimum, and for convergence of this optimal solution, it is
necessary to select the initial guess appropriately. Haddad et al. (2007) studied a point to point
path planning problem for a mobile base manipulator. They used the direct method and ran-
dom optimization to plan the path. The path was generated based on the objective function
of minimum transmission time and the kinematic constraints of velocity, acceleration as aell as
the dynamic constraint of torque of the motors. Furthermore, the path planning was also done
based on the stability constraint of the manipulator by ZMP method. Tangpattanakul and Ar-
trit (2009) paid attention to path planning of the manipulator based on the objective function
of minimum transmission time in the point to point case. The optimization problem was solved
by considering kinematic constraints using Harmony Search. The simulation results showed that
HS method converged faster than SQP method to the optimal solution, and the sensitivity of
this method was less toward the initial guess. Tangpttanakul et al. (2010) investigated the pro-
blem of point to point path planning by using HS optimization method. The simulation results
proved that HS was a better method for solving the problem of robot path planning. Zanotto et
al. (2011) considered the minimum transmission time and jerk as the objective function in the
optimization problem. Experimental results were also elaborated to compare with the theoretical
results. Chettibi and Lemoine (2007) planned a point to point path by using SQP. They offered
a single-link manipulator considering full dynamics of the manipulator and the driving motor.
To solve the problem of optimization, the objective function of minimum transmission time and
electro-mechanic constraints were used.
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This paper includes the following aspects of innovations. An optimal path is designed for a
manipulator by considering the most complete nonlinear dynamics, large deformation model and
Timoshenko beam model. In previous papers, direct methods were used and the effects of the
flexibility with the large deformation model were rarely considered in manipulators. In addition,
by using the optimal control method, simplification of non-linear equations is non-avoidable due
to the excessive complexity of the solution process. In most papers employing direct methods, the
minimum transmission time, minimum energy consumption and minimum jerk are considered as
the objective function. However, in this paper, the minimum transfer time besides the maximum
load carrying capacity of manipulators is assumed as the objective function. In this paper, the
Harmony Search method is used to determine the load carrying capacity of the manipulators
that have no restrictions to nonlinear dynamics of the systems. The methods like the optimal
control have some difficulties when dealing with such issues. So, here, the most complete process
is used to design an optimal path using HS method. The proposed optimization method has
the following advantages: (1) a global optimal solution is possible, (2) it is easy to program and
implement efficiently, (3) it ensures that the resulting optimized trajectory is smoother, faster,
and nonsingular, (4) it can also be extended to get optimized trajectories for other types of
robots, (5) it considers both kinematic and dynamic aspects of the robot, (6) it considers the
payload constraint, and (7) it is computationally superior and faster. The paper is thus organized
in the following Sections. In Section 2, dynamic modeling of the manipulator is investigated in
the large deformation case. In Section 3, the problem of path planning is discussed by a direct
method. Section 4 deals with the extraction of the optimization problem arising from path
planning. The method proposed for solving the optimization problem and a flowchart of optimal
path planning are presented in Section 5. Finally, the simulation results are presented for a
two-link flexible manipulator.

2. Dynamic analysis of a flexible manipulator under large deformation

Consider an m-link manipulator (Fig. 1) by n degrees of freedom (n > m) that should move
from the initial position X" to the final position X/ in space of end effector (assume ¢/", g™
are corresponding joint variables). For dynamic modeling, arms are based on the Timoshenko
beam model, and also shear effects are considered. The movement of the arms will be described
by the rotation angle of the links 6;, flexible displacement w;(x;,t) and rotation caused by the

flexible displacement ;.

Liip, My

final point

&y initial point

Fig. 1. m-link flexible manipulator with a fixed base
The displacement field for the Timoshenko beam with large deformation is as follows

Uy = —Zsinip(x, t) u, = w(x,t) + Z cos(x,t) (2.1)
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where Z is the distance to the neutral axis of the beam. Non-zero elements of the Green strain
tensor in the case of large deformation can be written as follows

1
Eyy = FEy+ ZK, = E(wa) +Z [—1 z(cos ) + w 5 sin )]

)

N—_——
Eo Ko (2.2)

1
Ey = 5(— siny +w  cos) = A

where FEj is axial strain, K}, — curve occurred in the beam element by large deformation, A —
shear strain.

In the above expression, w, = dw(x,t)/0x. Kinetic energy of the system equals to kinetic
energy of the arms K FE,,, and tip K Ey;, mass

KE = KEgm+ KEtip (23)
where
m 1
KEqm = Z KEi,arm KEi,arm = 5 /pz [pzT(xla t)pz(:vl, t)] dvi
i=1

1 1 Ui ?
KEyp = imtip(pgpptip) + §Itip ( > 9j>
j=1
where p;(z;,t) is the position of a small element on the i-th flexible arm and pyy, is the position
vector of tip mass with respect to the absolute coordinates { Xy, Yy, Zo} defined as follows

i—1

pi(zit) =Y Bj(lj, t) + Bi(w;,t)
=0

Bi(.%'i, t) = [xz COS(@Z‘_l + (91) — wi(xi, t) sin(@i_l + 01)]1
+ [z;sin(0;—1 + 0;) + w;(x;, t) cos(0;—1 + 6;)|K

m
pm'p:ZBj(lj,t) (i:1,2,...,m) BOZO 9020
j=1

Potential energy of the system consists of strain energy and gravitational potential energy

li

i=1]
m i—1 ly m (2.5)
+ Z piAig < Z Hj(lj, t) + /HZ(.TZ, t) d:cl> + Miipg Z Hj(lj, t)
i=1 j=0 0 J=1
Hi(z;,t) = x;sin(0;—1 + 0;) + wi(z;,t) cos(b;—1 + 0;) Hy=0 0o =0

where ¢ is the acceleration of gravity.

3. Problem statement

By separating the joint and flexibility variables and applying the extended Hamilton method,
the general form of the m-link manipulator equations is as follows

-1

Cs(a,9)

+ .
C.(q,9)

My M, -

qy
qr




Optimal point to point path planning of flexible manipulator...

183

where My is the inertia matrix for flexibility degrees of freedom in the manipulator, M, —
inertia matrix for rigid degrees of freedom, the vector q contains generalized coordinates, q,,qy
are vectors of the flexibility coordinates and joint coordinates, respectively, C¢(q,q), C,(q,q) —
Coriolis and centrifugal force vector for flexible and for rigid degrees of freedom, Q¢(q), Q,(q)
— gravity vector for flexible and for rigid degrees of freedom, 7 — torque applied to the joints.
By having both initial and final points of the end effector, the main purpose is to determine the
maximum load capacity, transmission time, joint variables vector, the corresponding velocity
and torque vector applied to the manipulator so that to satisfy all the constraints in the system.
To solve the problem by thr direct method, the profile of the joints path will be approximated
directly through interpolation functions such as polynomial, Spline and B-Spline functions, and
the problem of path planning will be changed to a parametric optimization problem in order to
calculate the constants of interpolation functions. Then, the optimization problem can be solved
by using meta-heuristic optimization.

3.1. Optimization by the objective function of maximum load carrying capacity

In this case, the objective of path planning in the point to point case is to calculate a
trajectory for the robot end effector in which the manipulator can carry the maximum dynamic
load and the kinematic constraints of the joints, velocity and acceleration, torque dynamic
constraint and end point accuracy constraint will be satisfied. In addition, the optimal path
must be planned not to meet manipulator singularity configurations. The problem of planning
an optimal path by considering the objective function and above the constraints will be presented
in the form of an optimization problem as follows

fobj = max(mtip7 Itip) (3 2)

qri(t < gmax (j7-t < k,; (']'7'75 < ko
subject to (i =1,2,...,m) l9ri )] I | fT(L )| < Ko i (D)] < Feas
m@)] < 7 g0 = gea(T)| < &

i T4

where my;p, It are the concentrated mass and moment inertia of the end manipulator, 7/*%* —
maximum torque applied to the joints.

3.2. Optimization by the objective function of minimum transmission time

In this case, minimization of the transmission time between the initial and final points is
the aim of optimal path planning. Assume ¢, (¢) as a candidate selected for the profile of the
joints path. By using a change in the variable ¢ = ¢/T (0 < { < 1), any kinematic and dynamic
constraints presented in the previous Section are discussed as bands of the transmission time.
The constraints governing joint velocity and acceleration can be converted into the following
formulas by applying the derivation chain rule

~ ~
T > Tv - Tv = max [max ‘qT’,Z(C)‘:| (A]J;,Z(C) — qu,Z(C)
i=1,2,...m CE[Ovl] kvi 7 dC (3 3)
|(7LIZ(C)| % ~/ d2c.7rz(§) .
> — - . _ 77
T>T4 = Ty z‘:llq,lﬁ}.{.,m [crél[%,}i] ko } qm(C) d¢2

Dynamic constraints determination the motors torque may be changed to constraints of two
bands in terms of the transmission time so that 7' € [T7,Tg]. By examining the bands time
obtained, finally, the end band [Tjsuwer, Tupper] Will be find for the transmission time. The optimal
transmission time for each profile of the trajectory can be obtained by minimizing the objective
function based on the transmission time of the period. By using a change in the variable ¢ = ¢/T,
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the differential equation of motion for the i-th variable of the joint in the m-link manipulator
will be as below

7i(Q) = ; {0+ T Ceba i=L2..m
ZMT i30r;(O) + Cri(q(€), 7 (C)) (3.4)
- B hm'(C) = - Qri(q(0)) _ o Til6)
PO =" Q0= TEEY RO = T
So, the dynamic constraints will be changed to the following equation
_ — 1 —
ai(¢) =1~ Qm‘(g) bi(¢) =1+ Qm‘(g)

Thus, for any ¢ € [0, 1], the time bands T related to the torque constraint are given in Table 1.

Table 1. Transmission time bands of the path profile selected for dynamic constraints

hei(¢) =0 hri(¢) <0
a;(¢) <0 a;(¢) = 0 bi(¢) <0 bi(¢) >0
bi(¢) <0 bi(¢) >0 a;(¢) <0 ai(¢) = 0
0 Tr = ET’;EC) Tr = \/ET;—Z(C) 0 T = Er,;fC) Tr = \/ET_Z—Z()ZC)
Tr, = ET—ZIEZC) Tr; — +o0 Tr;= ET_ZI()ZC) Tr; — +00

In general, the problem of optimal path planning by objective function of minimum transmis-
sion time and the presented constraints are developed in the form of the optimization problem

Jobj = min(T)

7
T>T, T, = max;—12..m [maxge[o,l] |qujlio|}
~1 1
subject to T >Ty Ty = max;=1,2,....m [maXCE[OJ] %} 2 (3-6)
T, <T <Tgr Table 1
@7~ Ga(T)| <e

4. The method of solving the optimization problem

To solve the problem of optimization, HS meta-heuristic method will be used. For designing the
end effector trajectory, it is necessary to model the path profile for any joint by using the profile

of a smooth trapezoid or a cubic Spline. For example, the overall form of a smooth trapezoidal
profile is always as follows



Optimal point to point path planning of flexible manipulator... 185

wm 1 243 <4
@+ DiTra = Ca(ca 5) << G
Grj = ¢?+Dqﬁ%f%; (<C<G (4.1)
ini 1 2(1 _C)B (1 _C)4
qTJ+D{ 1+<b_ga<(1_<b)2_(1_Cb)3)} wsosd
where

D; = gl — 4
Therefore, by the initial and final points of the trajectory and optimal determination of the
variables ((p,(,) (by observing the condition 0 < (,, ; < 1), the optimal form of joint motion
will be determined. A flowchart of optimal path planning is represented in Fig. 2 with the help
of Harmony Search for the m-link manipulator.

5. Numerical simulation

Generalized coordinates of a two-link flexible manipulator with a fixed base is considered as the
vector q = [01, 02, w1, 1, we,1p2]. w1 and we are transverse vibration variables of the first and
second arm, respectively. Also, ¥ and 5 are rotations caused by transverse vibrations of the
first and second arm. By using the finite element method and dividing the arms into multiple
elements, the flexibility variables of the i-th element of the first arm and the flexibility variables
of the j-th element of the second arm are presented as follows

wi; = [N1(x), Na(2){w;(t)} i = [N1(@), Na(z)){s ()} i=1,2...,m
wa; = [N1(z), No(x)[{wa;(t)} o = [N1 (@), Na(a) [{the; (£)} i=12,...,n

(5.1)

where n1 and ns are equal to the nodes of the elements network of the first and second arm. So,
the closed form of dynamic equations of the flexible two-link manipulator is as follows

[m11 mi2 Mz mig Mz Mg 0y [C1] [@1] [D1] [71]
Mo M3 M4 M5 M6 fQ Cs Q2 D, T2
m33 m3z4 M35 Mmae| | Wl n Cs; n Q3 n Dyl _ 10
Mas Mas Mg | |y, 0 Q4 Dy; 0 (5.2)
sym M55 Ms6| | g Cs; Qs Ds; 0
L M6 _¢2j_ L 01  [Qe] [Dejl LO]
i=1,2.....m J=1,2.... no

where the vector Q represents the effects of gravitational and potential energy of the system.
The vector D is a disturbance torque or a force vector. It should be noted that D has different
meanings. For example, it can be a friction and reaction torque or force. The end effector position
can be offered by the following equation

= [l1 cos 01 + la cos(01 + 02)]i + [I1 sin Oy + lasin(0; + 62)]j (5.3)

To optimally plan a path for a two-link manipulator in the point to point case, the optimi-
zation problems should be solved as follows:
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Determination of begining and end
2ining
joint variables of motion through
1 inverse kinematic solution

Determination of values ,;,Cpi, CaisCpi € [0, 1] randomly for
any link and producting joint path profile through

equation (4.1) ¢,;(¢),i=1,...,m

¥

Calculation of joint velocity and acceleration through ]

derivation by equation (4.1)

v

!

4a If /‘()b_) = (“ZN/;- [i/p) ]

equation (3.3)

Calculation of time bands of velocity
and acceleration (7,,T4) according to

Are kinematic constraints
developed in equation (3.3)
satisfied?

X

Calculation of time bands of torque
constraint (77, Tr)by using

Determination of value of

é equation (3.4), (3.5) and Table 1
¥
objective function
Tr, it Tr, > max(T,,T4)
T= T7, < max(T,,T4)
7b
¥

max(7T,,T4) if {Tl{ > max(T}, Tx)

Saving (a.i.Cp,i and value of ]

Assumption of small values for tip mass and
moment inertia and determination of arms torque
and flexibility variables through equation (3.1)

¥

Adding tip mass and moment interia throug

Myip(k + 1) = myp(k) + Am
Liip(k + 1) = Ly (k) + AI

and determination of arms torque and flexibility variables
for these values by equation (3.1)

Harmony Memory Matrix

objective function T in
Sh J

|7—'i (f) ‘ < TJmuI

g/ — g, ;(T)| <&

Generation of
10b) Harmony Memory

Replacing processes 2 to
8b to produce Harmony
Memory by HMS dimension

Saving Ca,i» (i and value I, (k), myip (k)
in Harmony Memory Matrix

9b

Are convergence
criteria satisfied?

Stopping and extraction of optimal values
Ca,i»Cni and objective through
new Harmony Memory Matrix

12b

Repeating processes 2
to 9a to procedure
Harmony Memory to
HMS dimension

Generation of new
Harmony Matrix

Are convergence
criteria satisfied?

Stopping and extraction of optimal values
Ca,i»Cp,i and objective function through
new Harmony Memory Matrix

13a

Fig. 2. Optimal path planning flowchart by Harmony Search method
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— Path planning based on the minimum transmission time

fobj = mln(T)
design variables = ((a1, (b1, Ca2, Cp2)
0:(t) = G from Eq. (4.2)

1 miy - mag| |01 Cq Q1
- il + from Eq. (5.2
[TQ] lmm mQG] 0o Cy Q2 a (52)
4,.(¢
T>T, T, = max;—12 {maXCE[OJ] %}
7,172
subject to T>Ta Ta = maxi= 5 [maxce[o,u Kai }
T, <T<Tg from Eq. (3.6) and Table 1
| X (T) — X" < e

— Path planning based on the maximum load capacity

fobj = max(myp)
design variables = ({41, (b1, Ca2, Cp2)
0:(t) = Gri from Eq. (4.2)

| mir oo mag| |0 C1 Q1

= .. f Eq. (5.2
R e RS IR
subject to 10;(t

To validate the results, simulation of a planar two-link manipulator described by Heidari
(2011) will be done and compared with the results obtained by the optimal control method.
Table 2 shows the parameters of the manipulator assumed.

Table 2. Parameters of the flexible two-link manipulator (Heidari, 2011)

| Parameter (unit) | Value | Parameter (unit) | Value
Length of links [m] | I; =l = 0.5 | Moment of inertia [m?*] | I; = I, =2.5-10"
Mass [kg] mp =mg =3 Young s moduIQus of By = Ey =210
material [N/m?]

The initial position of the end effectors, when ¢ = 0, is at the point (0.5,0) and when ¢ = 1s,
is at the point (0.5,0.5). The end effector velocity at the beginning and end of the path is
also assumed to be zero. To get rid of the singularity case in the manipulator, the constraint
O2(t) # 0° and 180° is considered in the optimization problem. The maximum torque of the
motors is equal to Timee = 8 Nm. The results of joints torque and the path paved by the end
effector by considering the minimum of torque as the objective function for three cases including
rigid arms, arm with small deformation and an arm with large deformation are shown in Figs.3
and 4. Figures 3a,b indicate that by taking the effect of flexibility of the arms into account,
the torques resulting from the large and small deformation exhibit fluctuation behavior to the
rigidity, and the torque resulting from large deformation is slightly greater than that from small
deformation. Figure 4 indicates that the paths obtained by small and large deformation models



188

H. Esfandiar, M.H. Korayem

do not reach the end point and deviation occurs. The deviation at the start point is large, and
the fluctuations of the end effector path are increased by greater flexibility. The results obtained

are in good agreement with the results reported by Heidari (2011).

(b)

(@) 10 10
o= : = rigid
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5 — < S < > == large
jop] R 3 57N -7
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= ol 3 / N y, \ =] = 0 VALY P FAMN Py
et 3 4 . 4 3 A= ~J \ ’ . / . / >
= = “ r N\ ,' \ - ~ ~— . - N / N
o & A /” \"l A 8 E g et \\‘\
=& 5| b N =8 st 1
o0 : — : o3
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Fig. 3. Torque applied to the (a) first link and (b) second link
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Fig. 4. End effector trajectory for the planar two-link manipulator

5.1. Results of path planning by the maximum load carrying capacity

This Section addresses the planning of an optimal path by considering the maximum load
capacity as the objective function. For this purpose, a two-link manipulator is taken on the plane
X Z in which the end effector moves from 7 = 1.6 m, z; = Om and after the time ¢t = 2's stops
in the point o = 1.2m, z5 = 1.2 m. For HS optimization method, harmony memory size also is
HMS = 10, the harmony memory considering rate is HMCR = 0.75 and the pitch adjustment rate
is PAR =0.25. The maximum velocity and acceleration equal to k, = 3rad/s, k, = 10rad/s?
respectively, and the maximum torque is T4, = 230 Nm. The allowed error from the final point
is € = 2cm as well. Manipulator parameters specified in this Section is are given in Table 3. In
all following figures, a smooth trapezoidal profile is considered as profile 1 and a cubic Spline
profile as profile 2. By solving inverse kinematics, the values of position and joints velocity at
the beginning and end of the path are obtained as follows

6,(0) = —1.4455 rad

01(2) = 1.6961 rad
61(0) = 02(0) = 61(2) = 6(2) =0

0(0) = —0.4240 rad

02(2) = 1.4455rad (5.4)

The results of these three cases including rigid arms, arms with small deformation and arms
with large deformation are presented. The results of the maximum load by considering kinematic
and dynamic constraints for both profiles are presented in Table 4. By studying the figures related
to the angular displacement and arms torque, it is clear that wherever the slope of torque figure
is greater, the corresponding angular displacements will change more quickly, and any change
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Table 3. Parameters of the two-flexible link manipulator

‘ Parameter ‘

Value (unit)

‘ Parameter

Value (unit) ‘

Length of links
Density of links
Young’s modulus

l[1=04m,ls =1.6m
p1 = p2 = 3000 kg/m?
By =FEy =

Cross-section area
Moment of inertia
Shear modulus

A=Ay =2.5-103 m?
L =1,=52-10""m?*

Gi1 =Gy =16-10°N/m?

of material 0.3 - 10 N/m?

@ 5 : ®) (— tigid (profile 1))
) — rigid (profile 1) 3 o rigid (profile 2)
g -04 rigid (profile 2) g 170l v small (profile 1)
= 06 “small (profile 1) = ==+ small (profﬂe 2)
§ 29[| ==+ small (profile 2) %8 1.65 ~ - }m‘ge Epro?}e 3
=75 _o ]l | = large (profile 1) = - - large (profile ¢
%i 0.3f] . large (profile 2) . % F% 1.60 . "))
; —-10 "; < 1.55 -
ERE FRIE
<G -1.4} <5145
o1 05 12 16 20 1405 01 05 12 16 20
Time [s] Time [s]
Fig. 5. Angular displacement of the (a) first link and (b) second link
(@) 150 — () 100
S8 100} (— rigid (profile 1) = | (— rigid (proﬁle 1)
: Z. rigid (profile 2) o Z, 50 rigid (proﬁle 2)
é’*& 50} «small (profile 1 g i ot “small (proﬁle 1)
3.2 o} |- small (profile 2 A ==+ small (profile 2)
A === large (profile 1 2 -50p | large (profile 1)
E Z -50F « large (profile 2 == 100 * large (profile 2)
2% 100} T2 \
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<% -150 2 - 150p
-200f ; == -200
“2505 0.1 0.3 12 16 50 04 03 12 16 20
Time [s] Time [s]

Fig. 6. Torque applied to the (a) first link and (b) second link

in the torque direction will alter the angular displacement of the arms. Figure 7 indicates that
the path obtained for profiles in different cases are smooth. By studying the figures and the
results obtained in this Section, it can be seen that the flexibility of the arms has a significant
effect on the problem of manipulator path planning so that the load capacity of the manipulator
for both profiles is less than the rigid one by taking into account the flexibility of the arms.
This difference is due to the limitation of the engine torque caused by torque fluctuations in the
small and large deformation models. A more careful flexibility analysis of the model developed
to be carried out and more complete nonlinear terms to be considered makes the results for
the load carrying capacity to decrease. Therefore, small deformation is no longer a complete
model for studying the effects of flexibility. Harmony Search method is appropriately consistent
with nonlinear dynamics of the system and for implementing this method. There is no need to
simplify the dynamic equations of the system. The results indicate superiority of the smooth
trapezoidal profile over the cubic Spline profile. Since, the load carrying capacity for the smooth
trapezoidal profile is greater than that for the cubic Spline profile. According to the results
obtained, it can be said as far as the capabilities of the method proposed are concerned that
this method has no problem with nonlinear dynamics of the manipulator, and the optimal path
will be obtained with appropriate convergence speed. It has potential to consider all kinematic,
dynamic, and singularity constraints as well as the end point accuracy constraint at the same
time in the optimization process.
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Table 4. Results of optimally path planning by the maximum load capacity
‘ Profile | Model | DLCC [kg] |

igid 8.4
Smooth 8l
trapezoidal swall 0.9
Z
P large 5.6
. rigid 8.4
b
SCL;jnlg small 3.3
P large 2.4
1.2
E10
N
0.8
— rigid (profile 1)
0.6 rigid (profile 2)
small (profile 1)
04 ==+small (profile 2)
=== large (profile 1)
0.2 + large (profile 2)

1.15 1.25 1.35 1.45 1.55 1.65
X [m]

Fig. 7. The end effector trajectory in rigid, small and large deformation models

5.2. The results of planning the optimal path by minimum transmission time

The planning of an optimal path will be investigated here by considering the minimum
transmission time as the objective function. The results are presented in form of a figure for the
cubic Spline profile only. By reviewing the previous Section and taking m;, = 1.5 kg, the results
of path planning are presented in Figs. 8 and 9 for arms corresponding to the large deformation
model. Since, the angular displacement of the first arm during motion is larger than the angular
displacement of the second arm, as shown in Fig. 8b, the angular velocity of the first arm is
greater than that of the second arm. Similarly, the torque applied to the first arm is greater than
@_ 50 (b)
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Fig. 8. Angular displacement (a) and angular velocity (b) of the first and second links in the large
deformation model

that in the second arm, and the engine of the first arm will reach its saturation point sooner.
The optimal path planned for all three models are shown in Fig. 10. By studying this figure, it
is clear that the path planned for the small and large deformation models does not reach the
end point, and there is a distance equal to the allowed amount ¢ = 2cm. The results of the
transmission time by considering kinematic and dynamic constraints and HS method for both
profiles are given in Table 5. It shows that HS method is efficient enough to solve the optimal
robot trajectory planning. What is presented in the table indicates that the flexibility of the
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arms increases the time of transmission for both profiles. The transmission times obtained for
the manipulator through the rigid and small deformation models are not much different. But,
the value of this parameter in the large deformation model is greater than that in rigid and
small deformation models. In this case, the results obtained from the smooth trapezoidal profile

are even better than the results of the cubic Spline profile.

o
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Fig. 9. Torque applied to the first and second links in the large deformation model
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Fig. 10. Optimal path paved by the end effector for the minimum transmission time in rigid, small and
large deformation models

Table 5. Results of the optimal path planning by the minimum transmission time

Profile Model Mlmmurr} transmission
time [s]
rigid 0.8794
SFOOthid 1 small 0.9152
i large 1.5603
- rigid 1.6583
Cl;ibnlc small 1.7562
- large 2.2011

6. Conclusion

The problem of optimal path planning for a flexible manipulator has been studied by using the
direct process and HS meta-heuristic optimization method in the point to point case and the
open-loop mode. The maximum of dynamic load capacity and the minimum transmission time
as two criterions determining the efficiency of manipulators have been considered as objective
functions in path planning of end the effecter. Full dynamics of the manipulator has been studied
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by taking large deformation of the arms into account. By using smooth trapezoidal and cubic
Spline profiles as joint path profiles, the planning of the optimal path has changed to a nonlinear
optimization problem through the direct process. To solve the problem of nonlinear optimization,
HS efficient method has been used as being appropriate for optimization problems with multiple
dimensions and having a high speed of convergence. The proposed method is more effective
for path planning than indirect methods (optimal control theory). This is because there is no
need to linearize and simplify nonlinear equations of motion which enables the dynamics of the
system to be considered completely. The limitation of selecting appropriate weight functions
does not exist in the proposed method, and there is no need for suitable initial guess to get
faster convergence. To evaluate the effectiveness of the proposed method, optimal path planning
for a two-link flexible manipulator has been performed for a trajectory between two points given.
Also, comparison has been made between the results obtained for the arms of the rigid, small
deformation and large deformation models. The results prove that the proposed method has a
good compatibility with all models, and is also applicable to multi-link manipulators.
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